

WHISTLER AREA TRANSPORTATION STUDY

PREPARED FOR:

City of Steamboat Springs
P.O. Box 775088
137 10th STREET
Steamboat Springs, Colorado 80477

DECEMBER 19, 1996

TP-96118

1375 WALNUT STREET, SUITE 211, BOULDER, CO 80302
PHONE (303) 442-3130 FAX (303) 442-3139

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	STUDY AREA	1
3.0	PREVIOUS STUDIES AND ADDITIONAL INFORMATION REVIEWED	1
4.0	EXISTING CONDITIONS	2
4.1	Study Area Roadways	2
4.2	Study Area Intersections	3
4.3	Existing Traffic Volumes	3
4.4	Intersection Levels of Service	4
4.5	Intersection Sight Distance Evaluation	5
4.6	Traffic Signal Warrants	6
4.7	Traffic Accident History	6
4.8	Transit and Shuttle Service	7
4.9	Bicycle and Pedestrian Facilities	7
5.0	SUMMARY OF EXISTING TRANSPORTATION ISSUES	7
6.0	FUTURE WHISTLER AREA LAND USE AT AREA BUILDOUT	8
7.0	FUTURE YEAR TRIP GENERATION AND DISTRIBUTION	9
7.1	Trip Generation	9
7.2	Trip Distribution and Assignment	9
8.0	BUILD OUT SCENARIO TRAFFIC CONDITIONS	10
8.1	Roadway Improvements	10
8.2	Intersection Levels of Service	11
8.3	Signal Warrant Analysis	12
9.0	BUILD OUT SCENARIO WITH STONE COURT EXTENSION	13
9.1	Traffic Volumes	14
9.2	Intersection Levels of Service	14
9.3	Signal Warrant Analysis	14
10.0	RECOMMENDED LONG-TERM IMPROVEMENTS	15
10.1	Corridor Improvements	15
10.2	Intersection Improvements	15
10.3	Transit and Shuttle System Improvements	16
10.4	Bicycle and Pedestrian System Improvements	16
10.5	Transportation System Improvement Thresholds	17

LIST OF TABLES

Table 1	Existing and Projected Levels of Service Summary Table	18
Table 2	Traffic Accident History at Study Area Intersections	19
Table 3	Whistler Area Parcel Trip Generation Estimates	20

LIST OF FIGURES

Figure 1	Vicinity Map	21
Figure 2	Existing Winter Saturday PM Peak Hour Volumes	22
Figure 3	Chinook Ln./Walton Creek Rd. Signal Warrant Worksheet	23
Figure 4	Whistler Rd./Walton Creek Rd. Signal Warrant Worksheet	24
Figure 5	Village Dr./Walton Creek Rd. Signal Warrant Worksheet	25
Figure 6	Transit/Shuttle Service Route Map	26
Figure 7	Pedestrian and Bicycle Facility Map	27
Figure 8	Whistler Area Parcel Map	28
Figure 9	Build Out Scenario Winter Saturday PM Peak Hour Volumes	29
Figure 10	Whistler Rd./Walton Creek Rd. Intersection Recommended Improvements ..	30
Figure 11	Build Out Scenario Winter Sat. PM Peak Hour Volumes w/ Stone Ct. Ext. ..	31
Figure 12	US 40/Dougherty Rd.-Stone Ct. Signal Warrant Worksheet	32

TECHNICAL APPENDIX

1. Level of Service Worksheets
2. Intersection Collision Diagrams

1.0 INTRODUCTION

The Whistler Area of Steamboat Springs is located southeast of the US 40/Walton Creek Road intersection and extends to the eastern and southern City limits. The purpose of the Whistler Area Transportation Study is to determine the ability of the existing and proposed transportation circulation system to accommodate future growth in the area. This study contains an analysis of the potential transportation and circulation impacts associated with the buildout of the Whistler Area during winter Saturday peak conditions. Potential long-term buildout traffic constraints are identified and any improvements to the circulation system necessary in the future are recommended.

Traffic projections associated with build out of the parcels within the Whistler Area were based on information from a variety of sources. Several recently completed traffic impact studies for specific development proposals were reviewed, as was the Mt. Werner Corridor Traffic Study, and the Yampa Valley Multi-Modal Corridor Transportation Plan. Area land use projections were provided by the City Planning Department for the majority of the vacant and currently under construction parcels where land use and density were known. For parcels where specific land use information was not known, land use data contained in the Community Plan was applied.

The build out traffic projections contained in this study should streamline the development review process when evaluating specific development proposals in the Whistler Area. However, it is anticipated that future site specific traffic studies for the vacant parcels in the study area will be conducted to address detailed traffic access patterns and the need for any improvements such as additional turn lanes and upgrades to traffic control at site access points.

2.0 STUDY AREA

The study area for the project is generally bounded by US 40 on the west, Walton Creek Road on the north, and the City limits on the east and the south. The primary roadways include US 40, Walton Creek Road, Whistler Road, and Village Drive. The study area is illustrated on the vicinity map as Figure 1. Eight major intersections within this area were identified for specific analysis during existing and future buildout conditions as illustrated on Figure 2.

3.0 PREVIOUS STUDIES AND ADDITIONAL INFORMATION REVIEWED

Data contained in recently completed transportation corridor and land use studies, as well as specific project traffic studies, were utilized in this study as background information for the undeveloped parcels. Specific studies used are listed below.

- Mt. Werner Corridor Traffic Study
- Steamboat Springs Area Community Plan
- Yampa Valley Multi-Modal Corridor Transportation Plan
- Numerous studies for individual parcel development proposals

Additional information was provided through meetings and discussions with City staff members involved with planning, engineering, accident records, trail systems, and transit services.

4.0 EXISTING CONDITIONS

4.1 Study Area Roadways

The study area is served by a circulation network including US 40 (designated as an arterial roadway in the Community Plan), collector streets, and local access roadways. A description of the primary roadways in the Whistler Area are listed below.

US 40 is a state highway which provides primary regional access to the Steamboat Springs area, as well as local access within City. US 40 is a four-lane roadway with left-turn lanes, deceleration lanes, and acceleration lanes at major intersections from Walton Creek Road north into the downtown area. The four-lane section transitions to two-lanes south of Walton Creek Road. The intersection of US 40/Walton Creek Road is signalized with acceleration and deceleration lanes along US 40. The intersection of US 40/Dougherty Road is controlled by a stop sign on the side street approach. US 40 is identified as an arterial street in the Area Community Plan. The paved roadway width along US 40 varies from approximately 80 feet north of Walton Creek Road to approximately 24 feet south of Dougherty Road. The posted speed limit along US 40 is 45 miles per hour (mph) north of Dougherty Road, and 55 mph south of Dougherty Road.

Walton Creek Road is designated as a collector street, and currently provides the only direct access from the Whistler Area to US 40. This two-lane roadway has paved shoulders from US 40 to Village Drive which are utilized by bicyclists. Turn lanes are not present at any of the intersections along this roadway, with the exception of US 40 where separate turn lanes exist. The roadway width ranges from approximately 45 feet at US 40 to 24 feet east of Village Drive. At Village Drive, an off-street hard surface trail exists along the northern section of Walton Creek Road. A bus shelter exists along the south edge of this roadway east of Whistler Road. The posted speed limit along this roadway is 35 mph. Stop signs control all side street approaches to Walton Creek Road.

Whistler Road - Eagle Ridge Drive is a two-lane roadway that serves as a collector street for adjacent residential traffic. Eagle Ridge Drive extends to the north from Walton Creek Road, and has a paved surface of approximately 36 feet wide. Extending to the south from Walton Creek Road is Whistler Road with a paved surface of approximately 24 feet wide. The east edges of these two approach roadways are aligned across the intersection. As a result, there is an existing 12 foot offset between the north and south legs along the west edge of the intersection with Walton Creek Road. The speed limit along these roadways is 25 mph. A hard surface bike trail begins along Eagle Ridge Drive and meanders north to connect with the existing Mt. Werner Circle trail.

Village Drive serves as an access route from the Whistler Area residential uses to the ski area along Mt. Werner Circle via Apres Ski Way. It is a two-lane roadway designated as a local street south of Walton Creek Road and a collector street to the north of Walton Creek Road. The roadway width is approximately 24 feet throughout. A southbound right-turn lane is currently under construction at the intersection with Walton Creek Road, all other intersections have single lane approaches. The posted speed limit along Village Drive is 30 mph north of Walton Creek Road and 25 mph in the residential area south of Walton Creek Road.

Stone Court currently is designated as a local street providing access to existing and future single family residential units south of Whistler Road. This two-lane roadway is approximately 30 feet wide at the intersection with Whistler Road, and is signed as Stone Lane at this location. Further west at the Chinook Lane intersection, this roadway is signed as Stone Court. It is assumed that the speed limit on this roadway is 25 mph. A stop sign along Stone Court controls the intersections with Whistler Road and Chinook Lane. Stone Court currently terminates at a cul-de-sac west of Chinook Lane and east of Walton Creek. If Stone Court were to be extended west across the creek, it would intersect with US 40 and align with the existing intersection of US 40 and Dougherty Road. The connection of Stone Court to US 40 has historically been discussed as a possible second access route into the Whistler Area.

4.2 Study Area Intersections

Eight study area intersections were identified for the Whistler Area transportation analysis based on discussions with City staff. The intersections and their existing control type are listed below. The existing lane configuration and control type at each of the intersections are also included on Figure 2.

1. US 40 / Walton Creek Road (*signal*)
2. Chinook Lane / Walton Creek Road (*stop sign*)
3. Whistler Road-Eagle Ridge Drive / Walton Creek Road (*stop sign*)
4. Village Drive / Walton Creek Road (*stop sign*)
5. Village Drive / Meadow Lane (*stop sign*)
6. Whistler Road / Skyview Court (*stop sign*)
7. Whistler Road / Stone Lane (*stop sign*)
8. US 40 / Dougherty Road-Future Stone Court (*stop sign*)

4.3 Existing Traffic Volumes

Traffic counts were collected at each of the study area intersections in September 1996, during the weekday PM peak hour period. As identified in previous studies and count programs, the areas within close proximity to the ski resort experience peak seasonal traffic volumes on Saturdays in the winter when the ski area is in operation and weekly lodging is turning over. The only exception to this trend is that US 40 has peak seasonal traffic in the summer. An extensive traffic volume collection study was conducted in 1995 on President's Day weekend for the Mt. Werner Corridor Traffic Study. These volumes were used to forecast peak winter Saturday volumes at the Whistler study area intersections. In order to account for growth that has occurred in the area since 1995, an annual growth factor of 5% per year (or a factor of 1.1) was applied to the 1995 volumes to attain current winter Saturday scenario volumes. It was determined that the intersections closer to the ski resort would experience the highest traffic increases between fall and winter conditions. In addition, the intersections with US 40 would experience reduced through volumes in the winter due to non-peak traffic along this corridor. Based on this data, the September 1996 volumes in the Whistler Area were factored to reflect current winter Saturday volumes. These volumes are considered baseline traffic volumes for this analysis, and are illustrated on Figure 2.

4.4 Intersection Levels of Service

In determining the operational characteristics of an intersection, "Levels of Service" (LOS) A through F are applied, with LOS A indicating very good operations and LOS F indicating poor operations. The intersection LOS is represented as an average delay in seconds per vehicle for all vehicles using the intersection in a given peak hour. LOS can be calculated for intersections with either stop sign control or traffic signal control. In either case, the LOS for each approach movement and an average LOS for the entire intersection are calculated. It is the average LOS that is commonly used to rate the relative congestion in an intersection. More complete level of service definitions are contained in the following table which may be useful when reviewing the LOS results.

Level of Service Definitions

LOS	Delay (avg. sec./vehicle)		Definition
	Signalized	Unsignalized	
A	0.0 to 5.0	0.0 to 5.0	Low volumes; primarily free flow operations. Density is low and vehicles can freely maneuver within the traffic stream. Drivers can maintain their desired speeds with little or no delay.
B	5.1 to 15.0	5.1 to 10.0	Stable flow with potential for some restriction of operating speeds due to traffic conditions. Maneuvering is only slightly restricted. The stopped delays are not bothersome and drivers are not subject to appreciable tension.
C	15.1 to 25.0	10.1 to 20.0	Stable operations, however the ability to maneuver is more restricted by the increase in traffic volumes. Relatively satisfactory operating speeds prevail, but adverse coordination or longer queues cause delays.
D	25.1 to 40.0	20.1 to 30.0	Approaching unstable traffic flow where small increases in volume could cause substantial delays. Most drivers are restricted in ability to maneuver and selection of travel speeds. Comfort and convenience are low, but tolerable.
E	40.1 to 60.0	30.1 to 45.0	Operations characterized by significant approach delays and average travel speeds of one-half to one-third the free flow speed. Flow is unstable and there is potential for stoppages of brief duration. High signal density, extensive queuing, or signal progression/timing are the typical causes of delays at signalized corridors.
F	> 60.0	> 45.0	Forced flow operations with high approach delays at critical intersections. Speeds are reduced substantially and stoppages may occur for short or long periods of time because of downstream congestion.

Level of service criteria contained in the Highway Capacity Manual¹ was applied to the study area intersection volumes illustrated on Figure 2 to determine existing levels of service during the winter Saturday P.M. peak hour period. The intersection level of service worksheets are contained in the Appendix. The results of the LOS calculations at the study area intersections are summarized in Table 1.

¹

Highway Capacity Manual, 3rd Edition, Highway Research Board Special Report 209, Transportation Research Board, National Research Council, updated 1994.

As documented in the level of service summary table, the overall intersection and the individual intersection approaches are operating acceptably in the LOS A-C range during existing winter Saturday PM peak hour conditions.

4.5 Intersection Sight Distance Evaluation

A sight distance evaluation was conducted at all of the existing study area intersections. It was determined that there is adequate sight distance at all of the intersections with stop sign control on the side streets for the vehicles approaching on the side street to safely enter the intersection (after stopping and pulling forward to the edge of the main street). However, some of the intersections had utility boxes and other obstructions located on corners which interfered with the minimum clear distances established in the City's roadway standards. The City's standards state that a minimum clear distance of 10 feet for local streets and 15 feet for all other roadway types from the roadway pavement should exist. Staff indicated that this requirement is intended to provide adequate sight distances at intersections. The following table contains a list of the intersections and descriptions of the sight distance limitations that were identified.

Existing Intersection Sight Distance Limitations

Intersection	Sight Distance Limitation
US 40/Dougherty Rd.	Trees along Dougherty (County roadway) obscure stop sign at intersection
Village Dr./Walton Creek Rd.	Utility boxes on northwest corner are within the minimum clear area and are tall enough to obscure visibility for southbound motorists who have stopped at the stop sign and have not pulled forward
Whistler Rd./Skyview Ln.	Construction related dumpster on northwest corner

There is adequate distance between the obstructions at the Village Dr./Walton Creek Rd. and Whistler Rd./Skyview Ln. intersections for vehicles on the side streets to pull ahead and see beyond. Therefore, these obstructions are not directly affecting the sight distances for stopped vehicles at the intersection, but the objects are within the minimum clear distance established by the City. All construction equipment and supplies (such as dumpsters) should be kept out of the clear zones.

The trees which are obstructing the view of the stop sign as vehicles approach US 40 along Dougherty Road should be cut back to provide adequate warning of the impending stop condition. It is our understanding that Dougherty Road is in the County. We recommend that the County be notified of the need for tree trimming on the approach to US 40. At all of the study intersections, snow accumulation from plowing will also contribute to sight distance limitations during winter conditions if snow banks exceed 3 1/2 feet in height. Given that this may easily happen, snow banks should be pushed as far back as possible in the vicinity of intersections.

4.6 Traffic Signal Warrants

The peak hour signal warrant criteria contained in the Manual on Uniform Traffic Control Devices (MUTCD)² was applied to the existing winter Saturday peak hour volumes at the intersections of Chinook Lane/Walton Creek Road, Whistler Road-Eagle Ridge Drive/Walton Creek Road, and Village Drive/Walton Creek Road. Traffic volumes at the other four unsignalized intersections in the study area were too low to even consider a traffic signal. The peak hour volume warrant considers traffic volume on approaching roadways, as well as the number of lanes available at the intersection to serve the approaching traffic. The signal warrant worksheets for the three primary stop sign controlled intersections within the Whistler Area are illustrated on Figures 3, 4 and 5, respectively. It was determined that the existing winter Saturday P.M. peak hour volumes do not satisfy minimum peak hour warrant criteria at any of the intersections analyzed.

4.7 Traffic Accident History

The Steamboat Springs Police Department provided a three year history of traffic accidents at the eight key intersections included in the study area. A summary of the accident history is included in Table 2. As indicated, approximately 80% of the traffic accidents occurred in the five winter months (November thru March) when the ski area traffic is highest and the road conditions are at their worst. Five of the eight intersections typically experience very low traffic accident frequency of less than one accident per year. The remaining three intersections along Walton Creek Road (at US 40, at Whistler Rd., and at Village Dr.) experienced between 10 and 20 traffic accidents in the three years reviewed. The detailed traffic accident reports were reviewed for these three intersections and collision diagrams were prepared to help identify correctable traffic accident patterns, if any. Collision diagrams are included in the Appendix. As expected, 70% to 80% of the traffic accidents at each intersection involved snowy or icy road surface conditions. The most common accident type observed at each intersection was the rear end accident, and most occurred when the road surface was slippery. Rear end collisions tend to be the least severe from an injury causation perspective.

Another common accident type at these three intersections involved vehicles turning off of the main street onto the side street which lost control on slippery surfaces and slid into vehicles waiting at the intersection on the side street approaches. In the case of Village Dr./Walton Creek Rd., the installation of an all way stop may correct this condition although there would likely be an increase in rear end accidents on the Walton Creek Road approaches, particularly considering that there is a grade of approximately 6 percent on Walton Creek Road in the vicinity of the intersection.

In general, the accident patterns observed in the collision diagrams did not suggest the need for immediate corrective measures. Rather, the accident patterns noted should be considered in conjunction with the projected buildout traffic patterns (discussed later in this report) to determine if a change in intersection traffic control or configuration is needed in the future.

²

Manual on Uniform Traffic Control Devices, U.S. Department of Transportation, Federal Highway Administration, Sec. 4C - Warrants, 1988 Edition.

4.8 Transit and Shuttle Service

Steamboat Springs Transit (SST) serves approximately 630,000 passenger trips per year with most of the ridership occurring during the winter months when the ski area is in operation (140,000 trips per month). Although the SST service is now a free to user system as opposed to a year ago when a fee was charged, the ridership has remained relatively constant. The Whistler Area is served by the SST red line which provides access to the ski area, as well as downtown. The SST green line runs throughout the Whistler Area providing access from the residential uses to the ski area during the winter ski season. The SST buses run every 20 minutes during the ski season, and are usually full to capacity with standing room only on Saturday afternoons as the ski area closes for the day.

In addition to the SST lines, various shuttle services circulate to specific condominium developments on routes through the Whistler Area, providing access to the ski area. The shuttle vans are also well utilized during peak times of the day although there are off-peak periods when utilization is less. The SST routes and stops, along with the shuttle routes serving the Whistler Area are illustrated on Figure 6.

4.9 Bicycle and Pedestrian Facilities

The Whistler Area is served by a network of pedestrian and bicycle facilities throughout according to existing data collected for this study, as well as information contained on the Trail Systems Map and in the Community Plan. Many of the facilities in the area are currently discontinuous given the piecemeal development patterns that have occurred. Current plans are proposing connections and completions of existing missing links as illustrated on Figure 7. Bicycle and pedestrian traffic is an important component of year round transportation in the area. Within the study area, existing hard surface trails are present along US 40 to the north which connect with the Yampa River bike trail west of US 40 and the Mt. Werner trail east of US 40. Currently, this trail has a southern terminus near the US 40 trail underpass south of Walton Creek Road. On-street paved shoulders along Walton Creek Road provide bicycle and pedestrian access from US 40 to the residential areas to the east. At Village Drive, the roadway narrows to 24 feet, thus discontinuing the on-street shoulder lanes utilized by bicyclists and pedestrians. An existing off-street trail continues from Village Drive on the north to Apres Ski Way, and to the north from Village Drive on the east side of the roadway. North of Walton Creek Road along Eagle Ridge Drive, an off-street trail exists which connects north to the Mt. Werner trail system. A discontinuous trail exists along Walton Creek and Whistler Park.

Many of the developments have constructed sidewalks along their frontages, though a discontinuous system exists due to several undeveloped parcels. Soft surface trails currently exist in and around the Bear Drive area.

5.0 SUMMARY OF EXISTING TRANSPORTATION ISSUES

All of the study area intersections operate very well within LOS A-C ranges during the existing winter Saturday peak period as shown in Table 1. The roadways and intersections currently provide adequate capacity to accommodate the existing peak ski season traffic. A sight distance evaluation at the intersections evidences that some of the intersections currently have objects that are in the City's minimum clear zone, although adequate distance at the intersections is available for vehicles

to pull beyond the obstructions for a clear sight of the oncoming traffic. The trees blocking the view of the stop sign as vehicles approach US 40 along Dougherty Road is the only limitation that requires action (cutting the trees back) due to safety concerns, and County staff should be notified of this condition. It was determined that minimum peak hour signal warrant criteria was not satisfied at any of the stop sign controlled intersections that were analyzed in the Whistler Area.

The 3-year accident data indicated that 70% to 80% of the accidents in the area are related to icy or snowy roadway conditions, with no other obvious or unusual accident patterns present. The intersection of Village Dr./Walton Creek Rd. may benefit from an all-way stop, however, rear end type accidents may increase with an all-way stop condition.

The Whistler Area is serviced by the SST red and green lines, as well as several individual shuttle services. The SST system is well utilized during the winter ski season. The pedestrian and bicycle facilities in the area include off-street hard and soft surface trails, on-street shoulder lanes, and sidewalks. The majority of the facilities are currently discontinuous in the Whistler Area.

6.0 FUTURE WHISTLER AREA LAND USE AT AREA BUILDOUT

Land use estimates for buildout of the currently vacant parcels in the Whistler Area were developed in order to make future year traffic projections and determine any roadway system needs. Several sources were referenced to attain land use and traffic projections. These included individual proposed developments on line with the City, data contained in the Mt. Werner Corridor study, the City's land use zoning map, seasonal and historical data on file with Colorado Department of Transportation (CDOT) for US 40, data contained in the Community Plan, as well as information provided through consultation with City staff. With this data, current aerial photographs were utilized to provide a graphic view of land use projections developed for vacant or under construction parcels in the Whistler Area. The parcels range in size from a specific development site to the in-fill of an existing subdivision area. The approximate location of the Whistler Area parcels are illustrated on Figure 8. As shown on the figure there are 40 parcels within the study area that will add to the traffic volumes in the future build out scenario.

Two primary types of land uses are zoned in the Whistler Area. The first major land use is residential development with varying densities. The second land use is mainly highway commercial located along US 40 which includes office, specialty retail, lodging, restaurant, and other related uses. The land use estimates provide a thorough and representative description of potential development in the Whistler Area. Conservative estimates were assumed when specific land uses and densities were not known. As specific development proposals come on line for any currently vacant parcel, the specific land use and size for the given parcel may change. However, it is anticipated that the range and extent of the build out land use estimates contained in this study can accommodate this unavoidable uncertainty. Some parcels may generate more traffic than anticipated, while others will generate less traffic. In any event, the end result will remain relatively the same for the future year projections and recommended improvements contained in the following sections of this study.

7.0 FUTURE YEAR TRIP GENERATION AND DISTRIBUTION

7.1 Trip Generation

Trip generation for build out of the parcels was based on land use rates contained in the Mt. Werner Corridor study, ITE Trip Generation Manual³, and individual studies for proposed development. The Saturday trip generation was estimated for each land use. Where Saturday trip generation rates were not known, estimates were made according to land use traffic characteristics during the Saturday periods.

It was determined that a certain percentage of the residential and lodging trips generated by the undeveloped parcels would be reduced to account for use of transit and shuttle ridership, as well as car pooling. Estimated automobile trip reduction factors for new trips generated by each of the land uses were developed based on the land use type, the proximity to transit lines, the level of shuttle service observed, proximity to the ski area, etc. The transit reduction percentages used in this study are consistent with those presented in the Mt. Werner Corridor study.

The commercial related uses will experience a pass-by trip reduction. Pass-by trips are associated with traffic that is already on the roadway (in this case US 40) traveling past the commercial uses. Pass-by trips do not create any increase in the traffic volumes within the primary impact area. In fact, the only impact of the pass-by trips will occur at the site driveways and adjacent intersections where through movements become turning movements into and out of the commercial site. A pass-by reduction factor was applied to restaurant and specialty retail land uses only. The pass-by percentages were derived from land use pass-by data contained in the ITE Trip Generation Manual.

Based on the trip generation and trip-type reduction assumptions presented above, winter Saturday average daily traffic (ADT) and P.M. peak hour trip generation estimates for the Whistler Area parcels were calculated and are contained in Table 3. As the data in the table indicates, it is anticipated that build out of the area will result in an increase of approximately 13,335 ADT and 1,220 P.M. peak hour winter Saturday traffic volumes. It is recognized that the trip generation estimates noted in the table involve the potential for some "double counting" of trips. For example, a portion of the new employees may reside in new or existing residences in the area and their commute trips would already be counted as part of the existing or build out residential development trip generation. There may also be certain trips between commercial centers and residential developments which would be counted twice. However, we estimate this potential double counting of trips to be minimal and conservative in nature.

7.2 Trip Distribution and Assignment

The peak hour trips shown in Table 3 were distributed onto the study area street network based on existing land use and traffic patterns in the City, and consideration for future growth patterns outside the study area. In general, it was estimated that 35% of the residential traffic would be oriented towards the mountain area, while the remaining residential traffic would be oriented towards US 40.

³

Trip Generation, Institute of Transportation Engineers, Fifth Edition, January 1991, updated February 1995.

to access downtown, other commercial areas, or communities to the south. In addition, background winter through traffic on US 40 was increased by approximately 45 percent due to traffic growth information from CDOT. Based on these assumptions, the build out peak hour volumes were assigned to the study area intersections and are illustrated on Figure 9.

8.0 BUILD OUT SCENARIO TRAFFIC CONDITIONS

8.1 Roadway Improvements

Adjustments to the lane configurations at the US 40/Dougherty Rd.-Stone Ct. and US 40/Walton Creek Road intersections will occur due to the proposed development of specific projects which will gain access from these intersections. Future turn lane additions or roadway improvements at these locations are assumed to be in place for the build out analysis. The assumed intersection improvements are illustrated on Figure 9 and include:

US 40 / Dougherty Road-Stone Court

- northbound and southbound left turn lanes on US 40
- northbound and southbound right turn deceleration lanes on US 40
- separate right turn and thru-left turn lanes on the new westbound Stone Ct. approach to US 40

US 40 / Walton Creek Road

- separate left turn and thru-right lanes on the new eastbound Walton Creek Rd. approach to US 40
- northbound left turn lane on US 40
- southbound right turn deceleration lane on US 40.

The approved Country Inn & Suites development (parcel number 8) has been conditioned to construct a portion of the future Stone Court extension for approximately 300 feet to the east of the US 40/Dougherty Road intersection. As identified in the traffic study for the project, a southbound left-turn lane into the Stone Court extension is required which will involve the widening of US 40. Drainage issues along both the east and west shoulders of US 40 will need to be addressed when this widening occurs. It is also recommended that a northbound left-turn lane be constructed at the same time the southbound lane is constructed given that the required pavement width will need to be constructed to shadow the southbound turn lane. Build out of the Country Inn and the remaining vacant parcel area (parcel number 40) will result in the need for the addition of acceleration and deceleration lanes along US 40 (per the CDOT access code requirements), as well as two outbound lanes from Stone Court.

The proposed Snow River development (parcel number 2) along US 40 between Dougherty Road and the southern Super 8 driveway will also be responsible for improving the Dougherty Road approach and providing a southbound right turn deceleration lane along US 40 per CDOT access code requirements.

Build out of the site (parcel number 6) located on the western edge of the US 40/Walton Creek Road intersection will require construction of the fourth leg of the intersection, the addition of a southbound deceleration lane, and the addition (restriping) of a northbound left turn lane into the

site. The existing traffic signal will also need to be modified to serve the fourth intersection leg. The build out scenario intersection lane configuration is also illustrated on Figure 9.

8.2 Intersection Levels of Service

The intersection levels of service were calculated with the addition of the build out peak hour volumes, and any additional turn lanes associated with a parcel's development as discussed previously in Section 8.1. Because a southbound right-turn lane is currently under construction along Village Drive at Walton Creek Road, it was assumed to be in place for build out scenario analyses. The level of service worksheets are contained in the Appendix. Table 1 lists the results of the buildout scenario peak hour LOS calculations. The majority of the study area intersections will have adequate capacity to accommodate the future build out volumes during the winter Saturday peak hour period. However, the following intersections will experience congestion and operate at poor levels of service on one or more approaches.

- US 40 / Walton Creek Road: This intersection's overall operation will remain in the LOS C range, however, the additional eastbound leg, northbound left-turn lane, and southbound left-turn lane will degrade to the LOS D range. In addition, the westbound left-through lane will operate in the LOS E range.
- Whistler Rd.-Eagle Ridge Dr. / Walton Creek Road: Although the overall intersection LOS is projected to operate in the LOS C range during build out conditions, the northbound left-turning volumes will operate in the LOS F range. Additional widening to provide for separate north- and southbound left-turn lanes would greatly improve the delays experienced on these two approaches. The recommended lane configuration is illustrated on Figure 10.

There is adequate width (approximately 36 feet) on the north leg of the intersection along Eagle Ridge Drive to formally stripe the approach for a separate left-turn lane and a shared through-right lane. On the south leg of the intersection along Whistler Road, the roadway section is currently 24 feet wide. Current right-of-way exists to allow for additional widening of Whistler Road to the west in order to provide enough width for a separate northbound left-turn lane and a through-right lane. Given the existing west side offset between the north and south legs, it would make sense to align these roadways. The intersection LOS was recalculated with the lane additions and is shown in Table 1. The overall intersection LOS will improve to the LOS B range with the recommended lane improvements. The northbound left-turn vehicle delay improves considerably with the separate lane, but will still remain in the LOS F range.

It should be noted that an intersection may have one or more approach movements with LOS in the D, E, or F range and still have an overall intersection LOS that is fairly good, say LOS B or C. This simply means that most vehicles incur relatively little delay while passing through the intersection (such as the main street through vehicles) while some vehicles experience considerable delay (such as on a side street at a stop sign trying to turn left onto the main roadway). This condition is relatively common on busy through streets with stop sign control on the side streets. Such is the case as discussed above at the Walton Creek Road/Whistler Road-Eagle Ridge Drive intersection. A side street approach with a poor LOS is not necessarily an indication that an intersection needs to be signalized. In fact, there

are established traffic signal warrant procedures (outlined in the Section 8.3 of this report) that can be used to help determine if a traffic signal is needed or warranted at a given intersection. Even if a traffic signal is not warranted at an intersection with one or more approaches operating with congested levels of service, the congestion itself should prompt traffic engineering staff to monitor the traffic accident history over time to insure that the congestion is not creating unsafe traffic conditions.

The completion of the Stone Court extension to US 40 would lower the northbound left turn traffic at this intersection and relieve some of the congestion projected. This condition is discussed in more detail in later sections of this report.

- Village Drive / Walton Creek Road: During winter Saturday peak hour build out conditions, this intersection is forecast to operate in the LOS E range, with the northbound approach operating in the LOS F range. Due to the balanced approach volumes during peak conditions, it is recommended that an all-way stop be considered at this intersection in the future. With an all-way stop control, the intersection is projected to operate in the LOS B range (volume-to-capacity ratio of 0.64) according to all-way stop LOS calculation methodology contained in the 1985 Highway Capacity Manual⁴. However, due to the 6 percent grade along Walton Creek Road at this intersection, rear end collisions may increase and stopped vehicles may have difficulty moving forward from a stopped position during severe icy and snowy conditions before sanding operations have been implemented. This tradeoff may be appropriate given that there is an average of four broadside collisions in this intersection per year that may be corrected (or have their severity reduced) by the installation of an all way stop (see the collision diagram in the Appendix). The operation of this intersection should be monitored as area development continues, and an all way stop should be implemented as congestion and/or accidents reach unacceptable levels.

The completion of the Stone Court extension to US 40 would also lower the northbound left turn traffic at this intersection and relieve some of the congestion projected. The Stone Court extension should also postpone the need for an all way stop at this intersection.

8.3 Signal Warrant Analysis

The MUTCD peak hour signal warrant criteria, introduced previously, considers the following factors in helping to determine the need for a traffic signal:

- traffic volume on the main roadway (both approaches)
- traffic volume on the side street (the highest approach volume is used)
- the number of lanes serving the traffic on both the main roadway and the side street
- the speed of traffic on the main roadway (greater than or less than 40 mph)

These four factors are entered into a traffic signal warrant graphic to determine if the peak hour signal warrant is met at a given intersection. It should be noted that LOS for the overall intersection

⁴ Highway Capacity Manual, Special Report 209, Transportation Research Board, Chapter 10-13 (Multiway Stop Control), 1985.

or an individual intersection approach is not a direct factor in determining the traffic signal warrant. It stands to reason that if most vehicles in an intersection experience poor LOS then a traffic signal warrant will likely be met. However, if a low volume side street approach has a very poor LOS while the majority of the traffic has little or no delay (good LOS) then the traffic signal warrant will not be met. As discussed above, poor LOS on an individual intersection approach is not necessarily an indication of the need for a traffic signal.

This traffic signal warrant approach was applied to several of the study area intersections with the addition of Whistler Area build out scenario winter Saturday peak hour volumes. In addition to the prior intersections analyzed for signal warrants, the US 40/ Dougherty Rd.-Stone Ct. intersection was included in the signal warrant analysis due to its revised configuration and increased traffic volumes generated by the future development of adjacent parcels. The signal warrant worksheets are shown on Figure 3 (Chinook Ln./Walton Creek Rd.), Figure 4 (Whistler Rd.-Eagle Ridge Dr./Walton Creek Rd.), Figure 5 (Village Dr./Walton Creek Rd.), and Figure 12 (US 40/Dougherty Rd.-Stone Ct.).

A review of the signal warrant worksheets indicate that:

- Peak hour signal warrant criteria is not satisfied at any of the analyzed intersections, assuming all recommended or planned intersection approach laneage improvements discussed above are in place and travel speeds on Walton Creek Road are maintained under 40 mph. This includes the addition of a separate northbound and southbound left-turn lane at the Whistler Rd.-Eagle Ridge Dr./Walton Creek Road intersection which is needed to serve build out volumes.
- If the improvements recommended at the Whistler Rd.-Eagle Ridge Dr. Walton Creek Road intersection are not added, minimum peak hour signal warrants would be satisfied.
- If speeds do exceed 40 mph on Walton Creek Road, peak hour signal warrants will be met at Chinook Lane, Whistler Road, and Village Drive.

The impact of the Stone Court extension on these signal warrants is discussed below.

9.0 BUILD OUT SCENARIO WITH STONE COURT EXTENSION

Currently, virtually all traffic from the Whistler area that accesses US 40 does so on Walton Creek Road. A secondary connection from the Whistler Area to US 40 is proposed in the City's circulation plan. Stone Court has been identified as the potential roadway connection. The extension of Stone Court from its current cul-de-sac terminus at Walton Creek to US 40 where it would align with Dougherty Road is proposed. A portion of the roadway will be constructed once the vacant parcels along US 40 adjacent to the proposed extension develop. According to conversations with City staff members, the City will be responsible for the construction of the bridge section over Walton Creek, and the adjacent parcel developers will be responsible for the construction of the roadway from US 40 to Walton Creek. The Stone Court extension will provide access to the southern portion of the Whistler Area, thus diverting a portion of existing and build out traffic volumes from the Walton Creek Road corridor to Stone Court. An analysis of the impacts associated with the construction of the Stone Court extension and the resultant traffic diversions are discussed in the following sections.

9.1 Traffic Volumes

The distribution of build out scenario traffic volumes would change with the Stone Court extension in place. The intersections along Walton Creek Road would be affected by the extension due to traffic diversions from this roadway to Stone Court in order to access the residences located in the southern Whistler Area. It was estimated that approximately 40% of the projected turning movement volumes traveling to/from the west via Walton Creek Road at Chinook Lane and Whistler Road, and approximately 20% at Village Drive, would divert to Stone Court. These traffic diversions affect the projected volumes at all of the study area intersections. Figure 11 illustrates the build out scenario volumes with the Stone Court extension. The most significant impact is that the northbound to westbound left turning traffic on Chinook Lane, Whistler Road, and Village Drive onto Walton Creek Road will be reduced. Recall from Section 8.2 that these northbound left turns were projected to be the most congested movements in the study area with the worst LOS (often in the F range) if the area builds out and the Stone Court extension is not implemented.

9.2 Intersection Levels of Service

The intersection LOS were calculated with the addition of the build out scenario traffic volumes assuming the diversion of traffic associated with the Stone Court extension. The level of service worksheets are contained in the Appendix. The level of service calculation results are provided in Table 3.

It is projected that all of the intersection operations will improve, except at US 40/Stone Court, with the Stone Court extension in place. The intersections are all projected to operate in the LOS A-C range with the extension of Stone Court. It was assumed that the turn lane additions at the Whistler Rd.-Eagle Ridge Dr./Walton Creek Road intersection were in place for this analysis. At the Village Dr./Walton Creek Rd. intersection, the provision of all-way stop control would improve the overall level of service from the LOS C range to LOS A-B range (volume-to-capacity ratio 0.61).

The US 40/Dougherty Rd.-Stone Ct. intersection is projected to operate in the LOS A range, with the westbound left-through lane operating in the LOS C-D range. Overall, the Stone Court extension will benefit the Whistler Area by improving intersection LOS (particularly along Walton Creek Road) and providing secondary access to US 40 from the area. The Stone Court extension will allow for shorter access routes for many residents and reduce the vehicle miles of travel on the roadway system. This extension will also improve emergency vehicle access to and from the southern and western portions of the Whistler area.

9.3 Signal Warrant Analysis

The MUTCD signal warrant criteria discussed previously was applied to the intersections with the addition of diverted build out winter Saturday P.M. peak hour volumes and the Stone Court extension in place to determine if signalization will be warranted. The peak hour signal warrant worksheets are shown on Figure 3 for the Chinook Ln./Walton Creek Rd. intersection, Figure 4 for the Whistler Rd.-Eagle Ridge Dr./Walton Creek Rd. intersection, and Figure 5 for the Village Dr./Walton Creek Rd. intersection. The US 40/Dougherty Rd.-Stone Ct. peak hour signal warrant worksheet is shown on Figure 12.

Based on the peak hour signal warrant criteria, it was determined that:

- If the Stone Court extension is in place and the travel speeds on Walton Creek Road are below 40 mph, no traffic peak hour signal warrants will be met at any of the Walton Creek Road intersections. This is assuming that the recommendation to provide an additional north- and southbound approach lane to the Whistler Rd.-Eagle Ridge Dr./Walton Creek Rd. intersection is in place also. If this additional lane is not constructed, minimum peak hour signal warrant criteria will be satisfied at this intersection.
- If speeds along Walton Creek Road exceed 40 mph, minimum peak hour signal warrants will be satisfied at the intersections with Whistler Road and Village Drive. The Chinook Lane intersection will not warrant a traffic signal even with 40 mph speeds if the Stone Court extension is constructed.
- The Stone Court extension reduces the need for a traffic signal at all of the intersections along Walton Creek Road. In addition, the extension will help postpone the need for all way stop control at the Village Drive/Walton Creek Road intersection by reducing the northbound and eastbound approach traffic volumes.
- It is not anticipated that the US 40/ Dougherty Rd.-Stone Ct. intersection will warrant a traffic signal even if the extension is constructed.

10.0 RECOMMENDED LONG-TERM IMPROVEMENTS

10.1 Corridor Improvements

It is anticipated that the existing study area roadway corridors will be able to adequately accommodate the projected traffic increases associated with the Whistler Area parcel build out. Therefore, additional through travel lanes are not required in the Whistler Area. However, the Stone Court extension will provide a secondary access route to the area, will improve roadway and intersection operations, and will postpone or eliminate the need for future traffic signals or all way stop control at the intersections along Walton Creek Road. On this basis, the Stone Court extension is recommended.

Individual developments will be responsible for bringing roadways up to current standards should their traffic additions warrant this, such as the improvement of Dougherty Road (currently narrow and gravel) and the western extension of Walton Creek Road at US 40.

10.2 Intersection Improvements

It is recommended that improvements be implemented at the following intersections in order to provide for safe and efficient traffic flows through the intersections in the future. These improvements are necessary whether or not the Stone Court extension is constructed.

- US 40/Dougherty Road - recommend that the County cut back tree branches blocking visibility of stop sign

- Village Drive/Walton Creek Road - monitor and provide all-way stop if and when congestion and/or safety considerations dictate (factors that will influence this determination include the Stone Court extension, and whether or not a traffic signal is installed at Whistler Dr./Walton Creek Rd. - a signal at the adjacent intersection may postpone the need for an all way stop at this location by providing gaps in the traffic flow along Walton Creek Road)
- Whistler Rd.-Eagle Ridge Dr./Walton Creek Road - provide north and south left-turn lanes

Lane additions and roadway improvements associated with the extension of Stone Court, the future access to Dougherty Road by the Snow River project, and the addition of the fourth leg at the US 40/Walton Creek Road intersection will be necessary. These improvements were assumed in place for the build out level of service analyses, and are listed below.

- US 40/Dougherty Road-Stone Court - bring Dougherty Road up to current paved roadway standards; construct northbound and southbound left-turn lanes along US 40; construct northbound deceleration and acceleration lane at Stone Court; construct southbound deceleration lane at Dougherty Road; provide two outbound lanes at Stone Court for a shared left-through lane and a separate right-turn lane
- US 40/Walton Creek Road - provide southbound deceleration lane; restripe the northbound median for a left-turn lane; restripe the westbound approach for a shared left-through lane and a separate right-turn lane; construct two eastbound lanes on the new leg for a separate left-turn and shared through-right lane; upgrade signal hardware and phasing to incorporate fourth intersection leg and northbound left-turn arrow

10.3 Transit and Shuttle System Improvements

The City is currently reviewing options to consolidate all shuttle services in the area and possibly take over management of these services. The transit service to the Whistler Area may expand given the existing peak demand and potential growth in demand generated by the build out of the area parcels. Transit ridership will continue to play a critical role in the future, as it does currently today, and steps should be taken to insure quality transit service in the future. As transit ridership increases with area development, the system of transit stops needs to be updated and consideration should be given to installing additional shelters where they do not already exist.

10.4 Bicycle and Pedestrian System Improvements

Several improvements to the City's trail system are proposed in the future. The City has identified future hard and soft surface trails, as well as proposed corridor connection areas. The corridor connections will provide for a continuous trail system throughout the Whistler Area and beyond. Several pedestrian and bicycle underpasses and bridges are planned for construction in the future also. The existing and future trail system is illustrated on Figure 7 (based on the best available information). It is recommended that the development of the vacant parcels also include the construction of sidewalks along the project frontages. This will improve the currently discontinuous sidewalk sections within the study area and encourage walking when possible. A connected sidewalk system is critical to supporting transit use in the area. The fact that sidewalks currently

may not exist in a specific area should not be reason to allow a new development to avoid constructing sidewalks. An interconnected system of bicycle and pedestrian facilities gets constructed one segment at a time. It is never too late to start.

10.5 Transportation System Improvement Thresholds

The transportation system improvements identified in Section 10.2 will be needed to accommodate the increased demand for transportation as the land area in the Whistler Area is built-out, as well as to improve safety at the intersections. It was determined that new signals may not be warranted in the Whistler Area, contingent upon the lane additions recommended at the Whistler Road-Eagle Ridge Dr./Walton Creek Road intersection and that speeds along Walton Creek Road remain at less than 40 mph. The need for roadway improvements at individual intersections will be triggered by the rate and sequence of the land development in the Whistler Area. It is difficult to predict which improvements will be needed first (such as the installation of an all-way stop at Village Dr./Walton Creek Rd.), and it is recommended that the traffic operational and safety conditions be monitored over time. However, specific development combinations that will likely trigger the need for specific improvements are summarized as follows:

- Development of the Snow River project (parcel 2), the Country Inn & Suites project (parcel 8), the Yampa River Meadows project (parcel 1), and the currently vacant highway commercial parcel 40 adjacent to the US 40/Stone Ct. intersection will drive the improvements recommended at the US 40/Dougherty Road-Stone Court intersection. These improvements include widening the intersection to accommodate additional turn lanes throughout.
- The development of the Walton Pond area (parcel 6) will trigger the need for turn lane additions and modifications to the traffic signal phasing at the US 40/Walton Creek Road intersection.

Construction of the Stone Court extension across Walton Creek should be pursued by the City. The timing will depend on adjacent development along the proposed extension (such as the proposed Country Inn & Suites) and should consider increased congestion in the Walton Creek Road corridor.

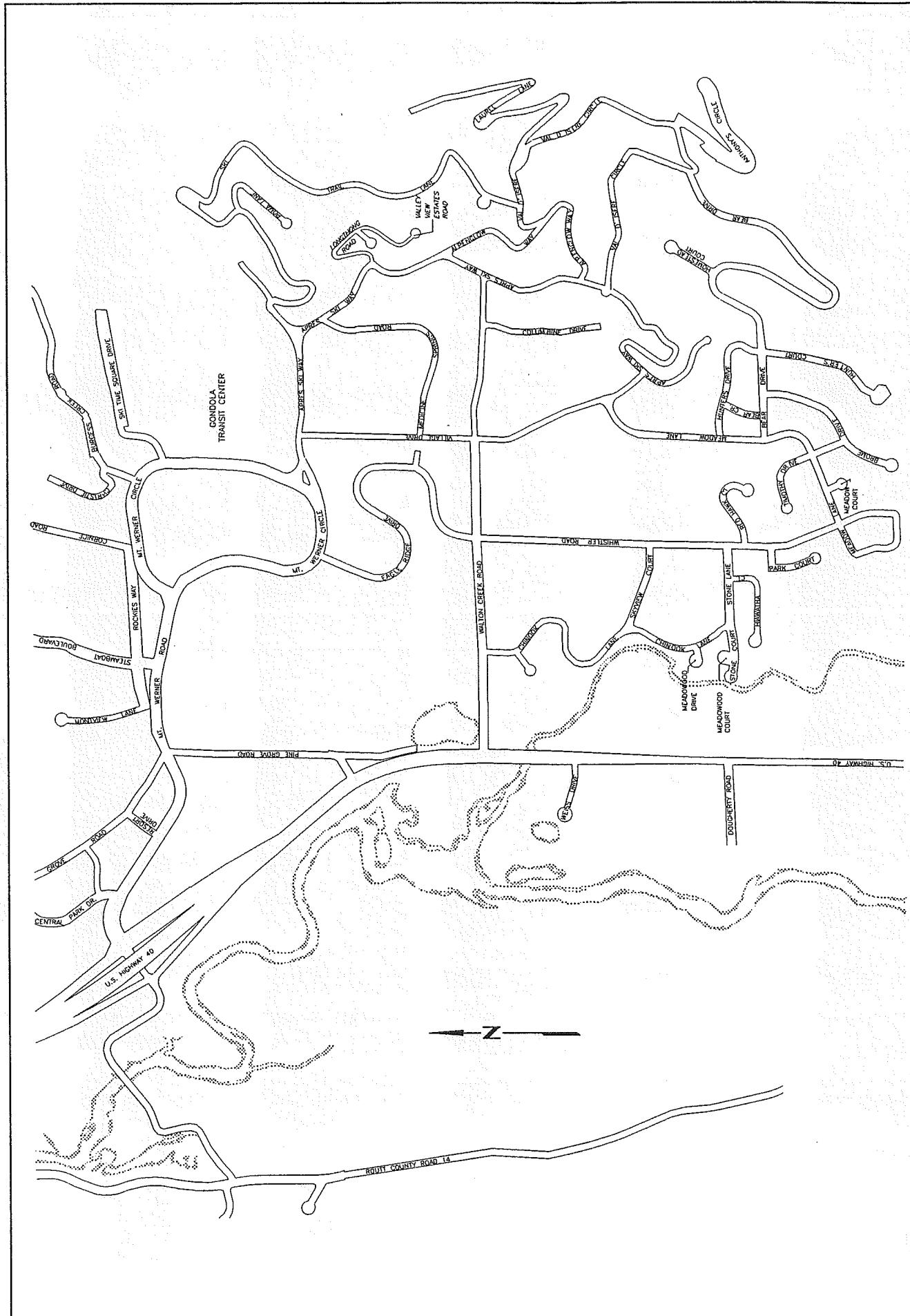
Improvements to the pedestrian and bicycle system are an important component of the transportation system in the area and should be pursued, both as parcels develop and as funding is available for the city-wide and regional connections. The transit and shuttle van consolidation system enhancements should be pursued aggressively.

Whistler Area Transportation Study
Existing and Projected Levels of Service Summary Table
Table 1

Intersection and Critical Movements	Existing		Buildout		Buildout with Improvements		Buildout with Stone Ct. Extension	
	Average Delay (sec/veh)	Level of Service (LOS)	Winter Weekend (P.M. Peak Hour)		Average Delay (sec/veh)	Level of Service (LOS)	Average Delay (sec/veh)	Level of Service (LOS)
			Average Delay (sec/veh)	Level of Service (LOS)				
SIGNALIZED								
U.S. 40 / Walton Creek Rd.	4.0	A	18.2	C	n/a	n/a	15.3	C
Eastbound Left	n/a	n/a	35.9	D	n/a	n/a	37.8	D
Eastbound Through-Right	n/a	n/a	31.7	D	n/a	n/a	33.5	D
Westbound Left	24.9	C	n/a	n/a	n/a	n/a	n/a	n/a
Westbound Left-Through	n/a	n/a	42.2	E	n/a	n/a	43.6	E
Westbound Right	17.9	C	10.7	B	n/a	n/a	15.2	C
Northbound Left	n/a	n/a	37.8	D	n/a	n/a	37.8	D
Northbound Through	4.9	A	22.2	C	n/a	n/a	15.2	C
Northbound Right	4.3	A	13.5	B	n/a	n/a	9.8	B
Southbound Left	2.8	A	26.9	D	n/a	n/a	31.4	D
Southbound Through	2.0	A	3.8	A	n/a	n/a	3.3	A
Southbound Right	n/a	n/a	3.1	A	n/a	n/a	2.5	A
UN SIGNALIZED								
Chinook Ln. / Walton Creek Rd.	1.0	A	1.9	A	n/a	n/a	1.0	A
Northbound Left-Right	7.3	B	18.6	C	n/a	n/a	9.5	B
Westbound Left	3.0	A	4.1	A	n/a	n/a	3.4	A
Whistler Rd. / Walton Creek Rd.	2.8	A	19.2	C	8.3	B	3.4	A
Northbound Left-Through-Right	9.0	B	92.5	F	n/a	n/a	n/a	n/a
Northbound Left	n/a	n/a	n/a	n/a	55.7	F	20.1	D
Northbound Through-Right	n/a	n/a	n/a	n/a	7.0	B	6.1	B
Southbound Left-Through-Right	8.4	B	15.1	C	n/a	n/a	n/a	n/a
Southbound Left	n/a	n/a	n/a	n/a	16.7	C	13.9	C
Southbound Through-Right	n/a	n/a	n/a	n/a	13.1	C	10.4	C
Eastbound Left	2.6	A	3.0	A	3.0	A	2.9	A
Westbound Left	3.2	A	4.3	A	4.3	A	3.7	A
Village Dr. / Walton Creek Rd.	5.6	B	31.5	E	n/a	n/a	14.8	C
Northbound Left-Through-Right	11.1	C	111.0	F	n/a	n/a	46.6	F
Southbound Left-Through	9.0	B	19.7	C	n/a	n/a	18.3	C
Southbound Right	n/a	n/a	3.6	A	n/a	n/a	3.6	A
Eastbound Left	2.6	A	2.9	A	n/a	n/a	2.9	A
Westbound Left	2.6	A	2.9	A	n/a	n/a	2.8	A
Village Dr. / Meadow Ln.	1.2	A	1.6	A	n/a	n/a	1.5	A
Eastbound Left-Right	4.2	A	4.7	A	n/a	n/a	4.4	A
Northbound Left	2.4	A	2.6	A	n/a	n/a	2.5	A
Whistler Rd. / Skyview Ct.	0.5	A	0.5	A	n/a	n/a	0.5	A
Eastbound Left-Right	5.3	B	5.5	B	n/a	n/a	4.7	A
Northbound Left	2.7	A	2.8	A	n/a	n/a	2.6	A
Whistler Rd. / Stone Ln.	0.5	A	0.5	A	n/a	n/a	2.1	A
Eastbound Left-Right	4.4	A	4.6	A	n/a	n/a	4.7	A
Northbound Left	2.5	A	2.5	A	n/a	n/a	2.6	A
U.S. 40 / Dougherty Rd.	0.0	A	1.5	A	n/a	n/a	2.8	A
Eastbound Left-Through-Right	n/a	n/a	13.3	C	n/a	n/a	18.7	C
Eastbound Left-Right	5.3	B	n/a	n/a	n/a	n/a	n/a	n/a
Westbound Left-Through	n/a	n/a	14.3	C	n/a	n/a	20.4	D
Westbound Right	n/a	n/a	4.4	A	n/a	n/a	4.7	A
Northbound Left	2.9	A	3.6	A	n/a	n/a	3.4	A
Southbound Left	n/a	n/a	3.5	A	n/a	n/a	4.0	A

Whistler Area Transportation Study
Traffic Accident History at Study Area Intersections

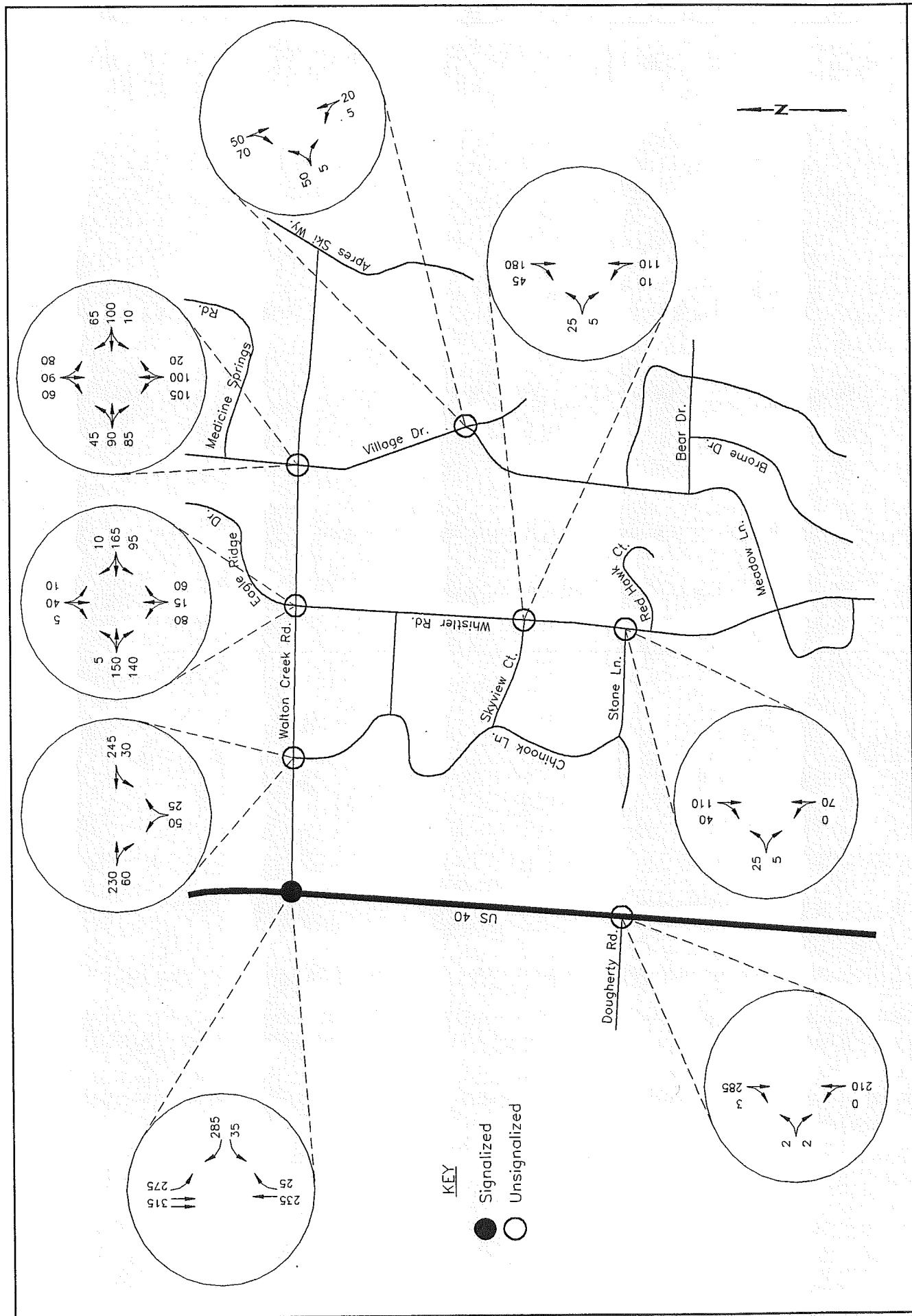
Table 2


Intersection	Number of Accidents			
	Sept. 1993 to Sept. 1994	Sept. 1994 to Sept. 1995	Sept. 1995 to Sept. 1996	Three Year Total
U.S. 40 / Walton Creek Road	2	6	3	11
Chinook Lane / Walton Creek Road	0	0	2	2
Whistler Road / Walton Creek Road	4	3	3	10
Village Drive / Walton Creek Road	6	8	5	19
Village Drive / Meadow Lane	0	0	0	0
Whistler Road / Skyview Court	0	0	2	2
Whistler Road / Stone Lane	0	0	1	1
U.S. 40 / Dougherty Road	0	0	0	0
Total Number of Accidents	12	17	16	45 *

* An average of approximately 1.9 accidents per year per intersection within the study area.

Note: Approximately 80% of all reported accidents at these locations occurred between the months of November and March when the ski area was in operation. Approximately 20% occurred between the months of April and October.

Table 3


Parcel #	Description or (status)	Land Use(s)	Zoning Class	Number	Independent Variable	Size		Winter Weekend Daily Trips				Winter Weekend PM Peak Hour Trips					
						Trip Rate	Trips	Percent Non Transit	Percent Pass-By	Total Trips after Transit and Pass-By Reduction		Trip Rate	Trips	Percent Non Transit	Percent Pass-By	Total Trips after Transit and Pass-By Reduction	
										170	90%	17	90%	15	8	7	
1	Yampa Meadows Estates	Residential	RE	19	D.U.s	10.00	190	90%	n/a	945	87	90%	n/a	78	30	48	
2	Snow River Development	Hotel	CH	100	Rooms	10.50	1,050	90%	n/a	826	15.09	91	100%	60%	55	26	29
		St-Down Rest.	CH	6	1000 s.f.	2.20	1,376	100%	60%	33	0.20	5	100%	n/a	5	3	2
		G. Office Bldg.	CH	15	1000 s.f.	33	100%	n/a	33	0.20	5	100%	n/a	5	3	2	
		Apartments	CH	108	D.U.s	5.44	587	70%	n/a	411	0.56	60	70%	n/a	42	23	19
3	Super 8 Motel	Motel	CH	40	Rooms	8.38	335	90%	n/a	302	1.20	48	90%	n/a	43	16	27
		Office Bldg.	CH	n/a	n/a	80	100%	n/a	80	n/a	5	100%	n/a	5	2	3	
4	Forest Service Office Bldg.	Office Bldg.	CH	4	1000 s.f.	229.34	917	100%	60%	550	15.09	60	100%	60%	36	17	19
5	Walton Pond, Parcel C	St-Down Rest	CH	70	Rooms	10.50	735	90%	n/a	662	0.87	61	90%	n/a	55	21	34
6	Walton Pond Area	G. Office Bldg.	CH	20.7	1000 s.f.	2.20	46	100%	n/a	46	0.20	5	100%	n/a	5	3	2
		SST Maint. Facility	CH	32.5	1000 s.f.	42.00	1,365	100%	n/a	10	1.00	10	100%	n/a	2	1	1
		Specialty Retail	CH	n/a	n/a	n/a	207	90%	n/a	186	1.44	36	90%	n/a	32	12	20
7	Luxury Inn	Motel	CH	25	Rooms	8.28	551	90%	n/a	496	1.00	65	90%	n/a	59	23	36
8	Country Inn & Suites (currently vacant)	Motel	CH	65	D.U.s	8.48	111	70%	n/a	77	0.59	10	70%	n/a	7	4	3
9		Residential	CH	17	D.U.s	6.50	254	70%	n/a	177	0.59	23	70%	n/a	16	9	7
10		Residential	CH	39	D.U.s	6.50	111	70%	n/a	77	0.59	10	70%	n/a	7	4	3
11		(construction underway)	CH	17	D.U.s	6.50	111	70%	n/a	77	0.59	10	70%	n/a	7	4	3
12	Settlers Crossing (infill)	Residential	RH	6	D.U.s	10.00	60	90%	n/a	54	0.90	5	90%	n/a	5	3	2
13	Woodbridge	Residential	RMM	12	D.U.s	6.50	78	70%	n/a	55	0.59	7	70%	n/a	5	3	2
14	(currently vacant)	Residential	RML	70	D.U.s	6.50	455	70%	n/a	319	0.59	41	70%	n/a	29	16	13
15	Mountain Village Apts.	Residential	RML	103	D.U.s	6.50	670	70%	n/a	469	0.59	61	70%	n/a	43	24	19
16	Villas at Walton Creek	Residential	RMH	108	D.U.s	6.50	702	70%	n/a	491	0.59	64	70%	n/a	45	25	20
17	(currently vacant)	Residential	RML	7	D.U.s	6.50	46	70%	n/a	32	0.59	4	70%	n/a	3	2	1
18	Eaglebridge Subdivision	Residential	RMM	130	D.U.s	6.50	845	70%	n/a	592	0.59	77	70%	n/a	54	30	24
19	Block 9 Eagleridge (currently vacant)	Town Homes	RMH	20	D.U.s	6.50	130	70%	n/a	91	0.59	12	70%	n/a	8	4	4
20		Condos	RR	45	D.U.s	6.50	293	70%	n/a	205	0.59	27	70%	n/a	19	10	9
21		(construction underway)	RMH	63	D.U.s	6.50	410	70%	n/a	287	0.59	37	70%	n/a	26	14	12
22	(currently vacant)	Residential	RR	17	D.U.s	6.50	111	70%	n/a	77	0.59	10	70%	n/a	7	4	3
23	(construction underway)	Day Care Center	RR	10	employ.	2.61	26	100%	n/a	26	0.71	7	100%	n/a	7	4	3
24	(currently vacant)	Residential	RML	5	D.U.s	6.50	33	70%	n/a	23	0.59	3	70%	n/a	2	1	1
25		Residential	RML	12	D.U.s	6.50	78	70%	n/a	55	0.59	7	70%	n/a	5	3	2
26	Victorian Meadows	Residential	RMH	30	D.U.s	6.50	195	70%	n/a	137	0.59	18	70%	n/a	13	7	6
27	Sunburst Town Homes	Town Homes	RMM	21	D.U.s	6.50	137	70%	n/a	96	0.59	12	70%	n/a	8	4	4
28	Meadow Lane Town Homes	Town Homes	RML	30	D.U.s	6.50	195	70%	n/a	137	0.59	18	70%	n/a	13	7	6
29	Saddle Creek Town Homes	Town Homes	RMM	32	D.U.s	6.50	208	70%	n/a	146	0.59	19	70%	n/a	13	7	6
30	Bear Creek Subdivision	Town Homes	RH	50	D.U.s	10.00	500	90%	n/a	450	0.90	45	90%	n/a	41	23	18
31	Bear Run (infill)	Residential	RR	10	D.U.s	6.50	100	90%	n/a	90	0.59	9	90%	n/a	8	4	4
32	Running Bear (infill)	Residential	RE/C	47	D.U.s	10.00	470	90%	n/a	423	0.90	42	90%	n/a	38	21	17
33	(currently vacant)	Residential	RML	72	D.U.s	6.50	468	70%	n/a	328	0.59	42	70%	n/a	29	16	13
34	(currently vacant)	Residential	CT	9	1000 s.f.	2.20	20	100%	n/a	20	0.20	5	100%	n/a	5	3	2
35	Trappers Crossing (currently vacant)	Residential	RR	145	D.U.s	6.50	943	70%	n/a	660	0.59	86	70%	n/a	60	33	27
36		Residential	RR	22	D.U.s	6.50	143	70%	n/a	100	0.59	13	70%	n/a	9	5	4
37	(currently vacant)	Residential	RR	22	D.U.s	6.50	143	70%	n/a	100	0.59	13	70%	n/a	9	5	4
38	Meadow South	Residential	RR	54	D.U.s	6.50	351	70%	n/a	246	0.59	32	70%	n/a	22	12	10
39	Ski Ranches (infill)	Residential	RM	30	D.U.s	10.00	300	90%	n/a	270	0.90	59	90%	n/a	24	13	11
40	(currently vacant)	Residential	CH	52	1000 s.f.	42.00	2,184	100%	n/a	1,420	1.97	655	100%	n/a	128	73	55

TRANSPLAN
ASSOCIATES, INC.
Consulting Engineers

WHISTLER AREA TRANSPORTATION STUDY
VICINITY MAP

Scale	1" = 1200'	Date	11/4/96	Drawn by	RAC	Job #	96118	Figure	1
-------	------------	------	---------	----------	-----	-------	-------	--------	---

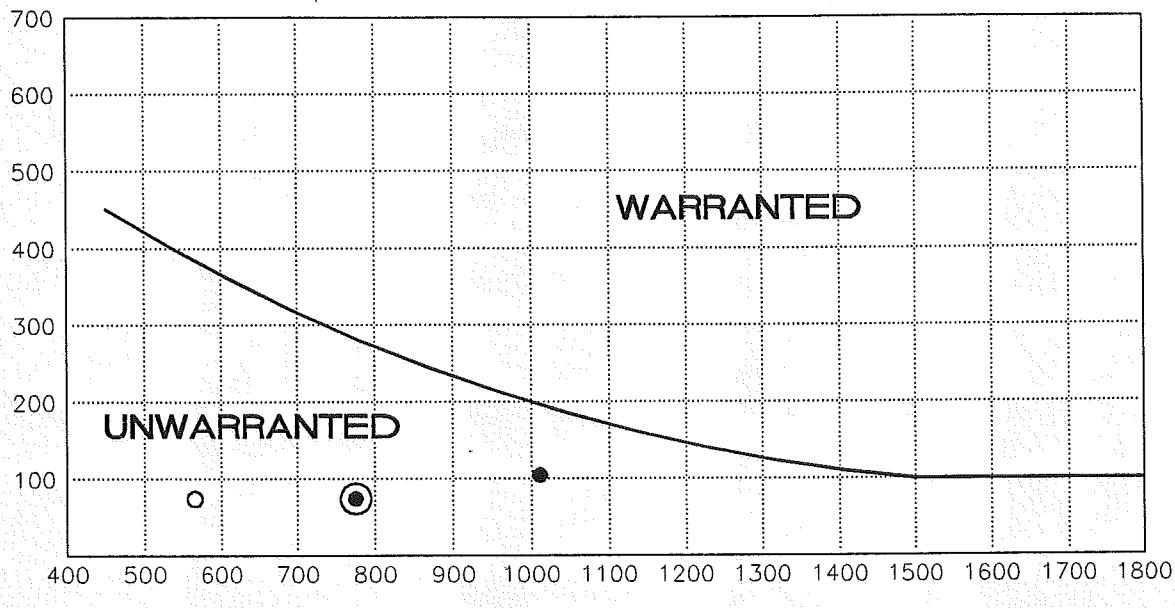
WHISTLER AREA TRANSPORTATION STUDY

EXISTING PM PEAK HOUR VOLUMES

11/4/96

Drawn by RAC

Job # 96118


Figure 2

PEAK HOUR VOLUME WARRANT

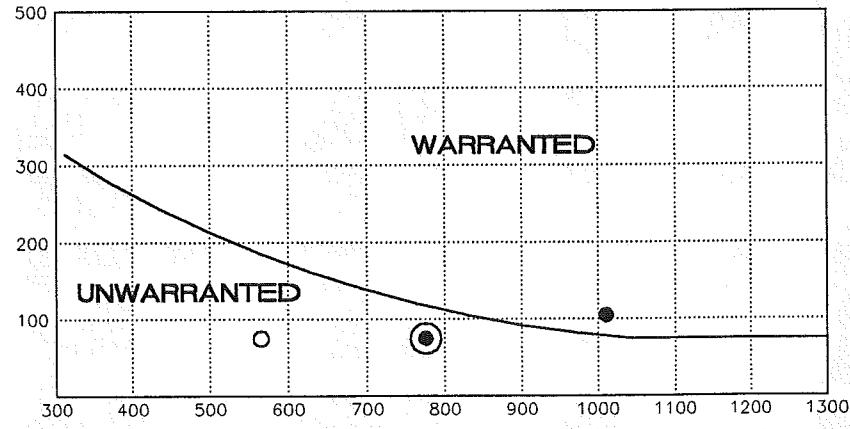
(BELOW 40 MPH ON MAJOR STREET)

1 LANE & 1 LANE

HIGH VOLUME APPROACH - VPH
CHINOOK LN.

WALTON CREEK RD.

TOTAL OF BOTH APPROACHES - VPH


- Existing (565,75)
- Buildout (1010,105)
- Buildout with Stone Ct. Extension (775,75)

PEAK HOUR VOLUME WARRANT

(COMMUNITY LESS THAN 10,000 POPULATION
OR ABOVE 40 MPH ON MAJOR STREET)

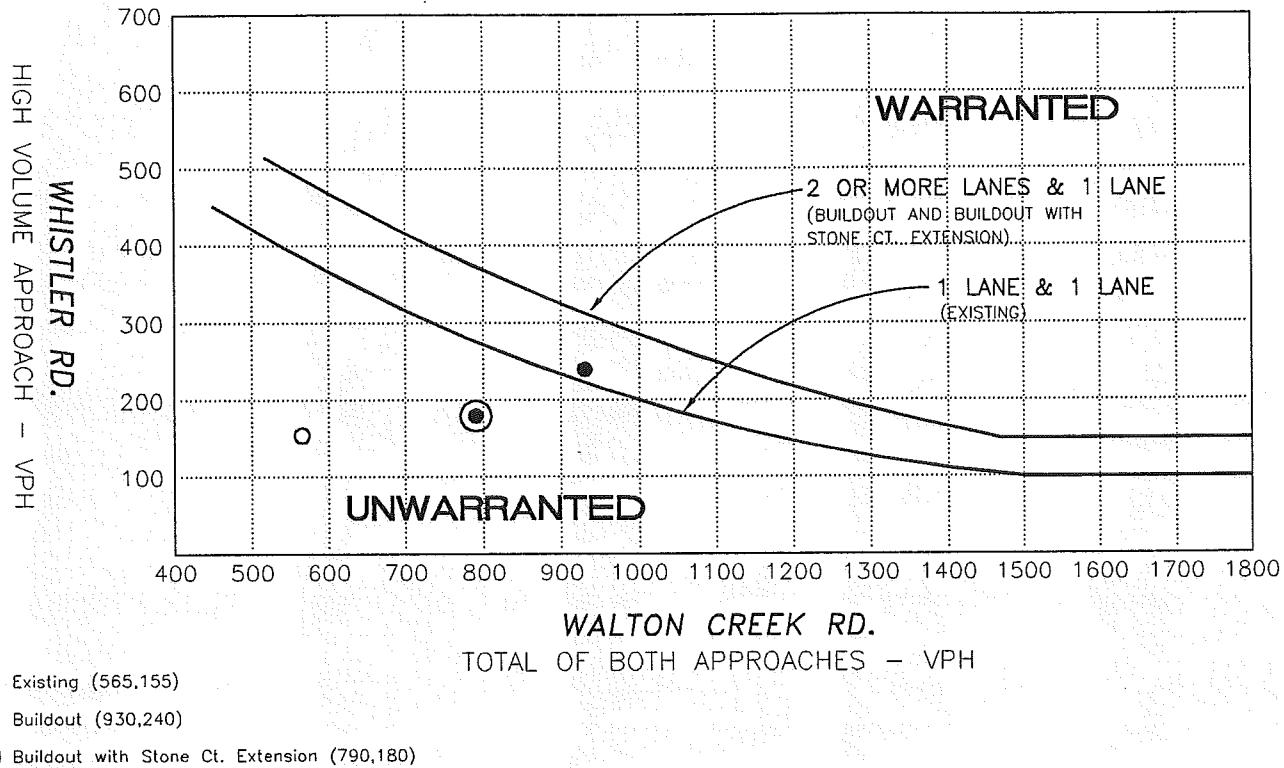
1 LANE & 1 LANE

HIGH VOLUME APPROACH - VPH
CHINOOK LN.

WALTON CREEK RD.

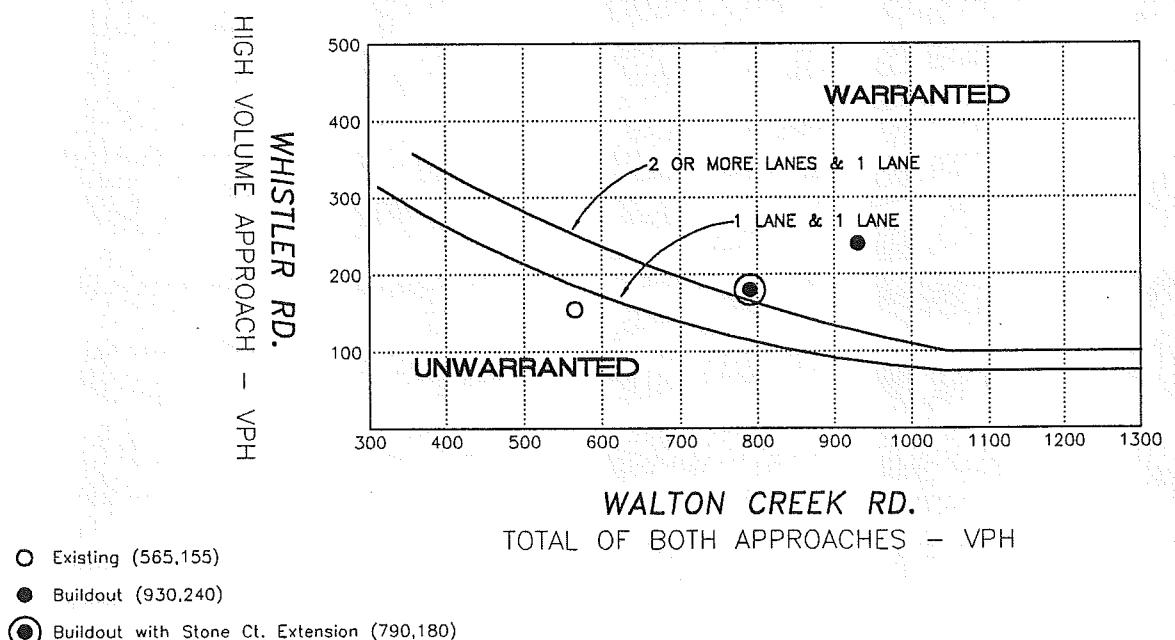
TOTAL OF BOTH APPROACHES - VPH

- Existing (565,75)
- Buildout (1010,105)
- Buildout with Stone Ct. Extension (775,75)



WHISTLER AREA TRANSPORTATION STUDY CHINOOK LN. / WALTON CREEK RD. SIGNAL WARRANT WORKSHEET

Scale	NTS	Date	11/4/96	Drawn by	RAC	Job #	96118	Figure	3
-------	-----	------	---------	----------	-----	-------	-------	--------	---

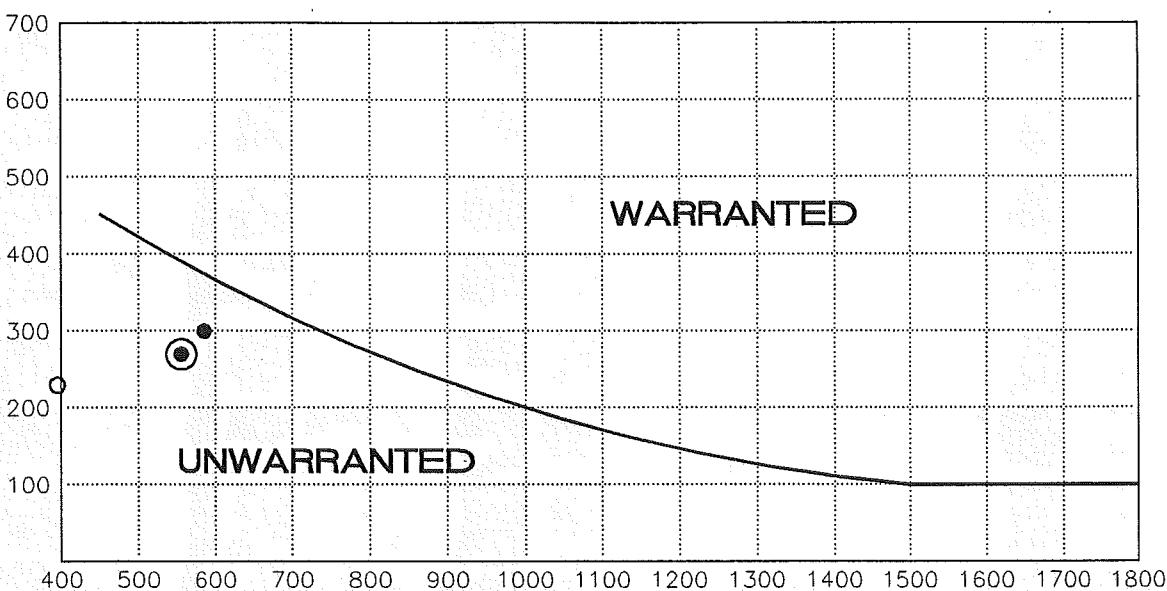

PEAK HOUR VOLUME WARRANT

(BELOW 40 MPH ON MAJOR STREET)

PEAK HOUR VOLUME WARRANT

(COMMUNITY LESS THAN 10,000 POPULATION
OR ABOVE 40 MPH ON MAJOR STREET)

WHISTLER AREA TRANSPORTATION STUDY
WHISTLER RD. / WALTON CREEK RD. SIGNAL WARRANT WORKSHEET


Scale NTS Date 11/4/96 Drawn by RAC Job # 96118 Figure 4

PEAK HOUR VOLUME WARRANT

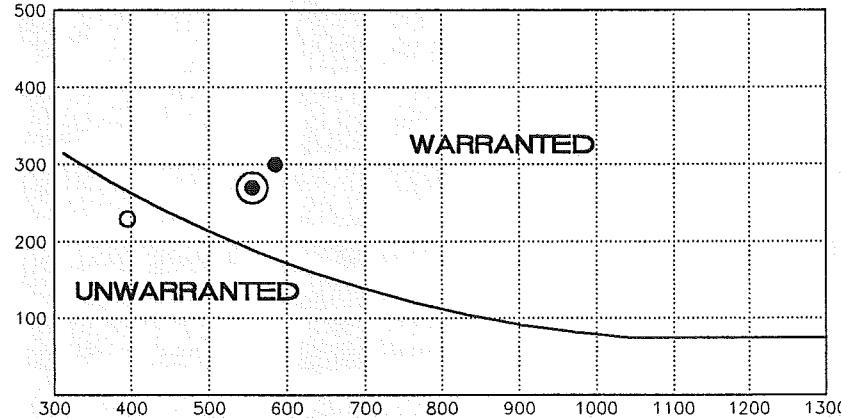
(BELOW 40 MPH ON MAJOR STREET)

1 LANE & 1 LANE

HIGH VOLUME APPROACH - VPH
VILLAGE DR.

WALTON CREEK RD.

TOTAL OF BOTH APPROACHES - VPH


- Existing (395,230)
- Buildout (585,300)
- ◎ Buildout with Stone Ct. Extension (555,270)

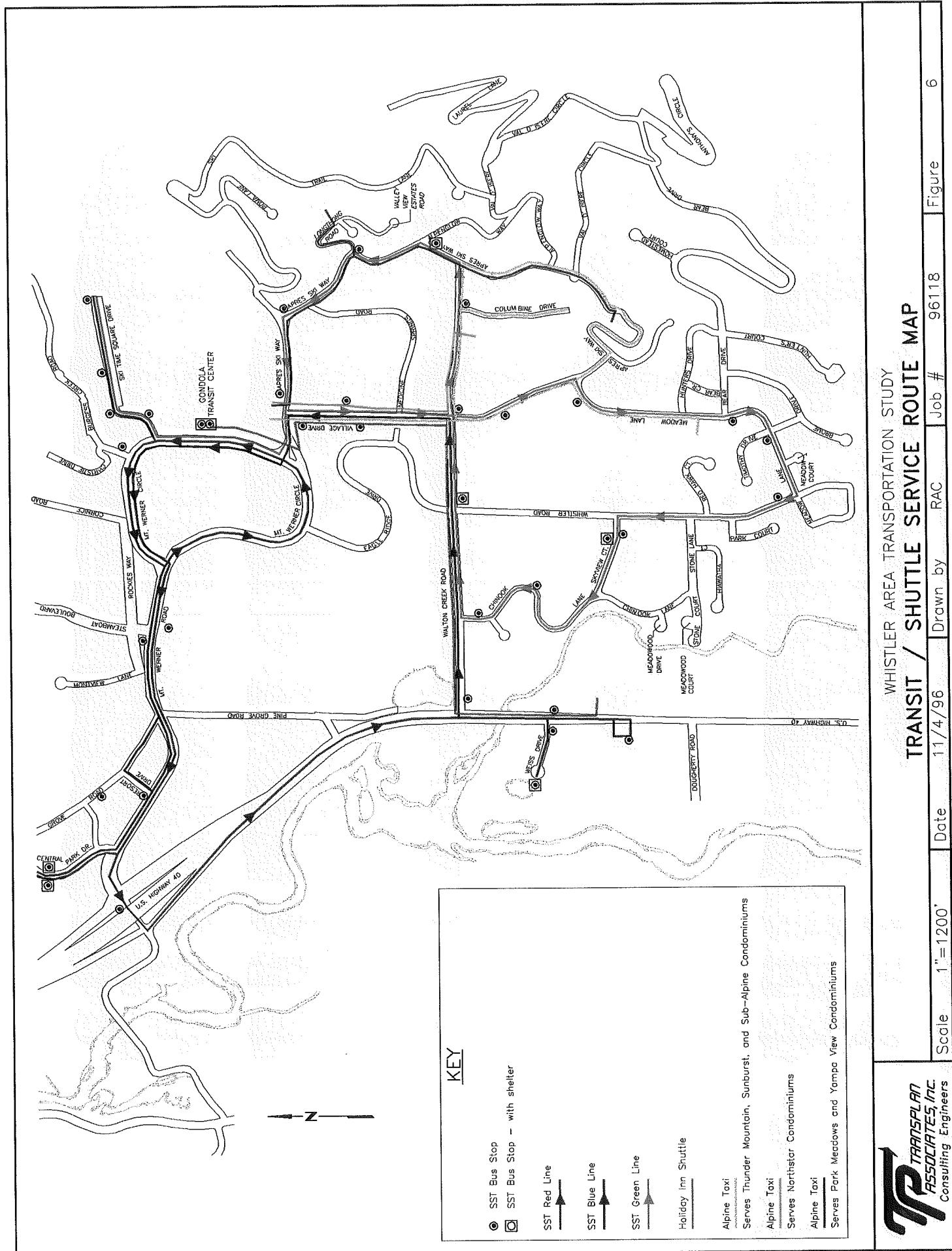
PEAK HOUR VOLUME WARRANT

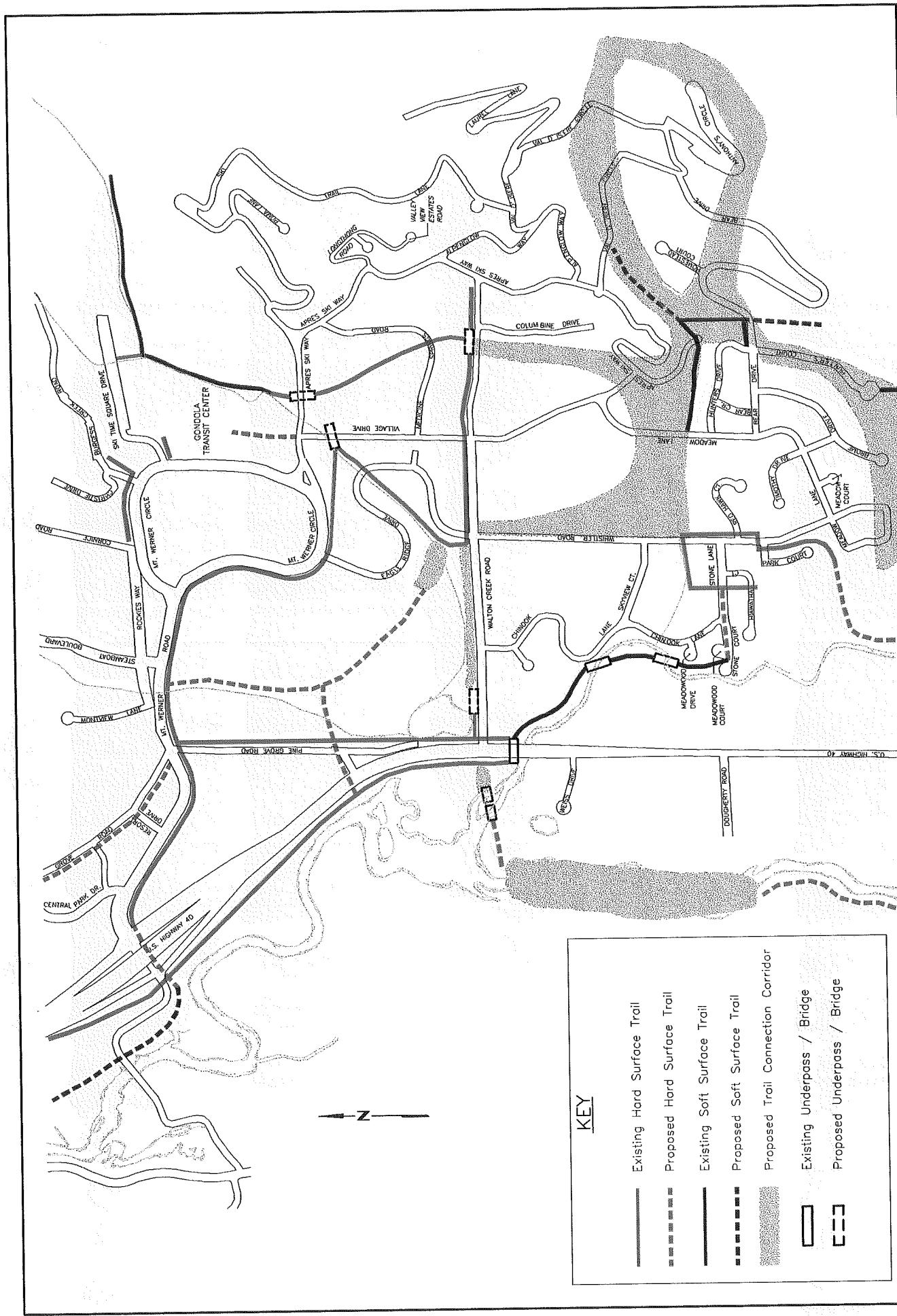
(COMMUNITY LESS THAN 10,000 POPULATION
OR ABOVE 40 MPH ON MAJOR STREET)

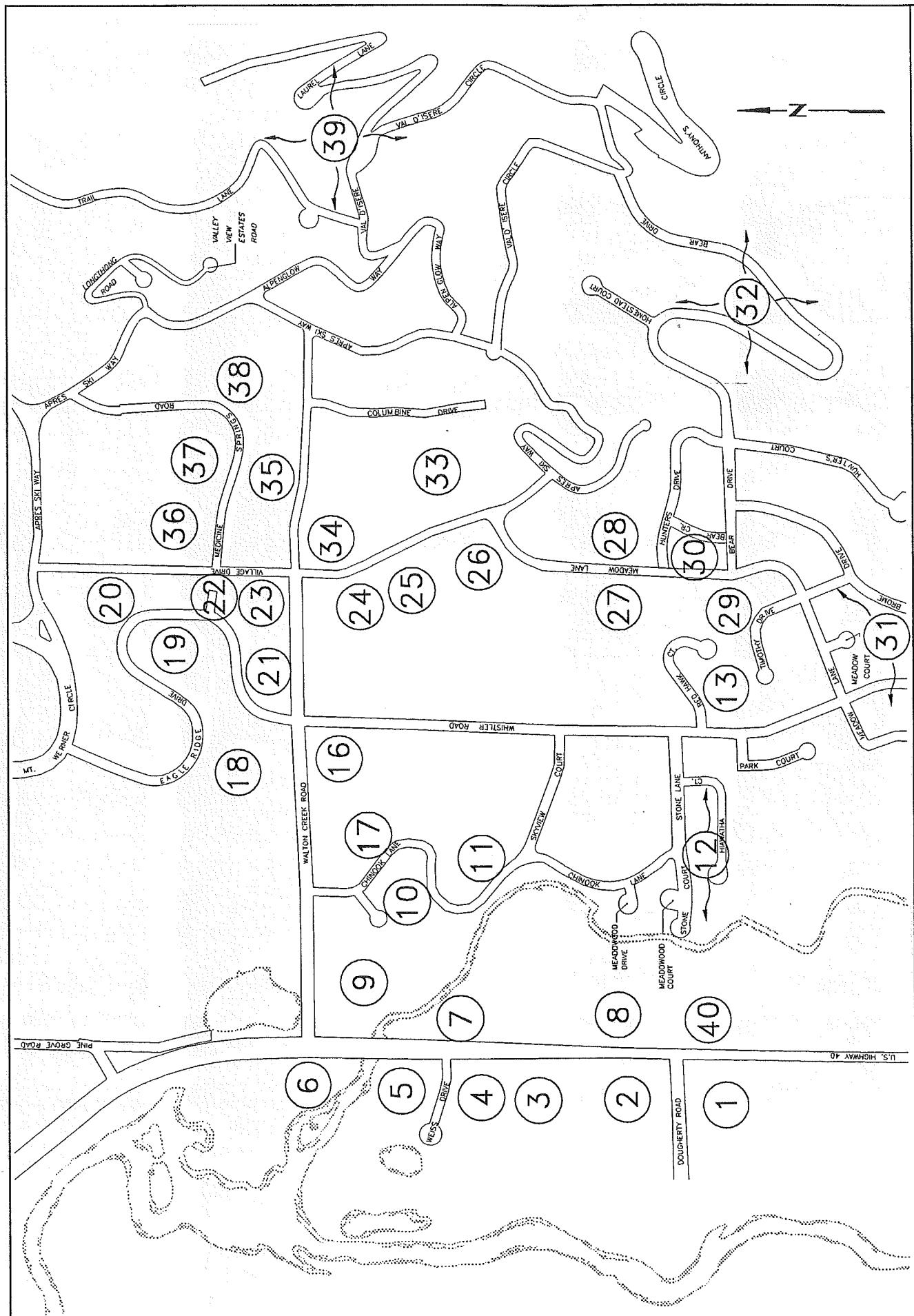
1 LANE & 1 LANE

HIGH VOLUME APPROACH - VPH
VILLAGE DR.

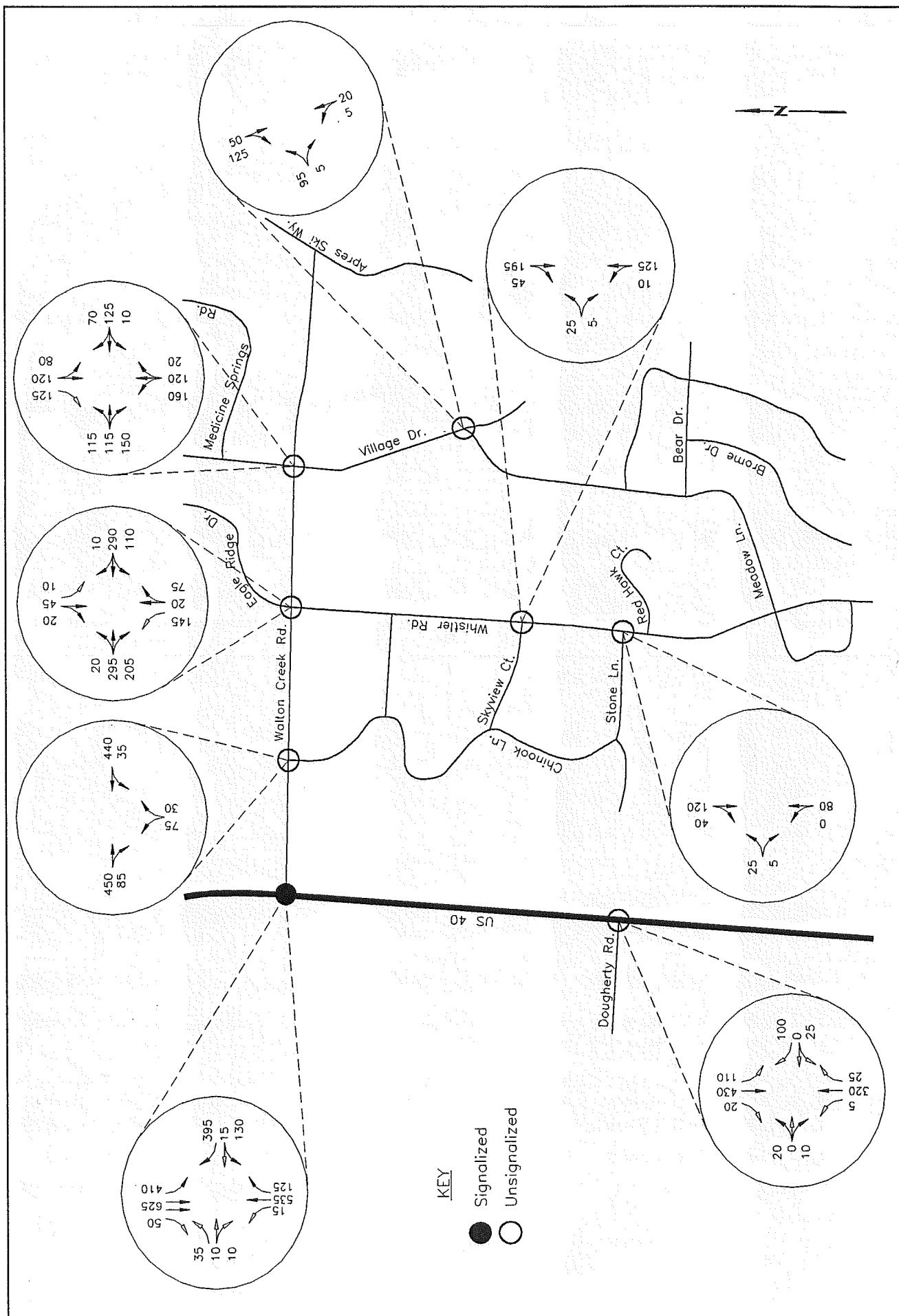
WALTON CREEK RD.


TOTAL OF BOTH APPROACHES - VPH


- Existing (395,230)
- Buildout (585,300)
- ◎ Buildout with Stone Ct. Extension (555,270)


WHISTLER AREA TRANSPORTATION STUDY VILLAGE DR. / WALTON CREEK RD. SIGNAL WARRANT WORKSHEET

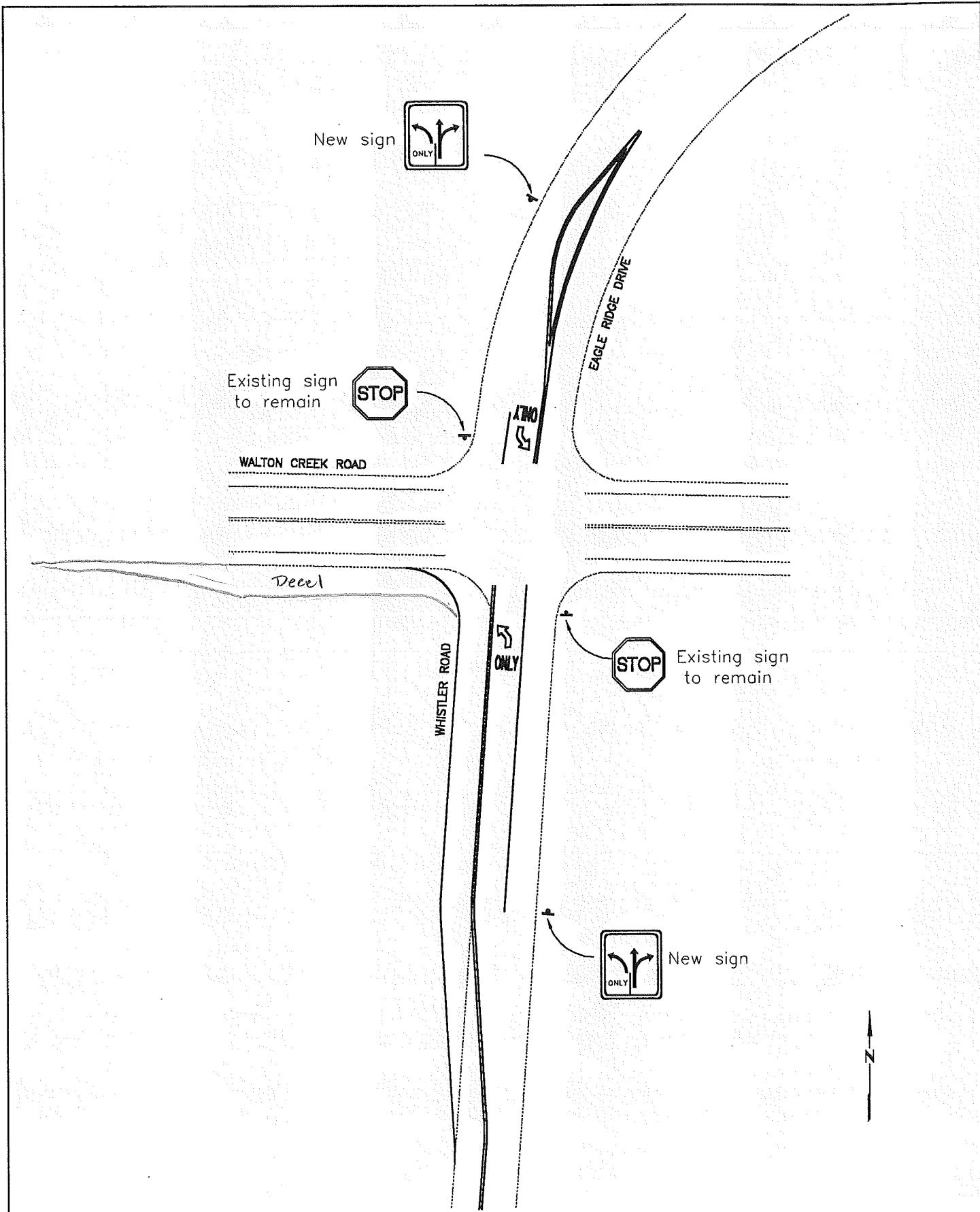
Scale	NTS	Date	11/4/96	Drawn by	RAC	Job #	96118	Figure	5
-------	-----	------	---------	----------	-----	-------	-------	--------	---



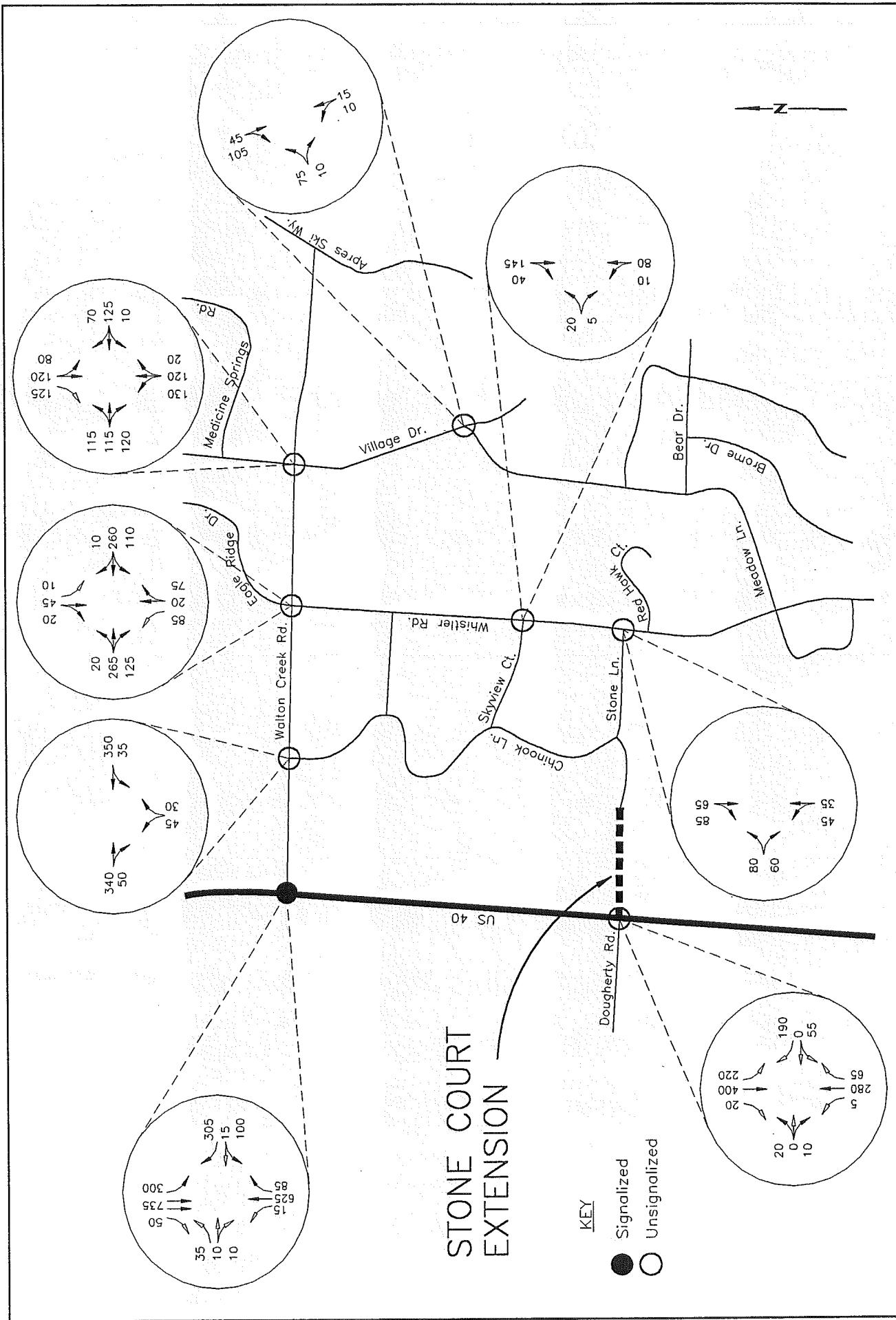
WHISTLER AREA TRANSPORTATION STUDY
PEDESTRIAN AND BICYCLE FACILITY MAP

WHISTLER AREA TRANSPORTATION STUDY
WHISTLER AREA PARCEL MAP

Scale	NTS	Date	11/4/96	Drawn by	RAC	Job #	96118	Figure
8								8

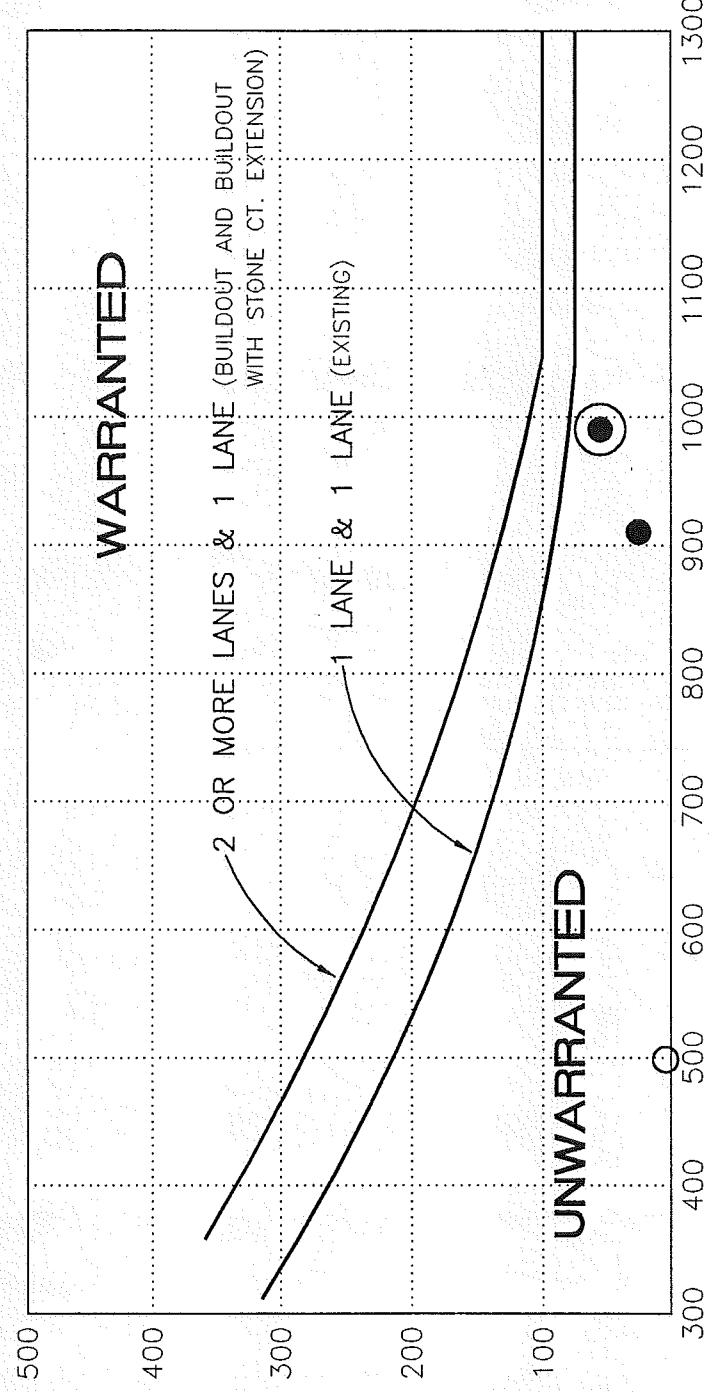


WHISTLER AREA TRANSPORTATION STUDY


TRANSPLAN
ASSOCIATES, INC.
Consulting Engineers

29

WHISTLER AREA TRANSPORTATION STUDY
WHISTLER RD./WALTON CREEK RD. RECOMMENDED IMPROVEMENTS


Scale 1"=50' Date 11/4/96 Drawn by RAC Job # 96118 Figure 10

WHISTLER AREA TRANSPORTATION STUDY
SATURDAY PM PEAK HOUR VOL
 6 Drawn by RAC Job #

PEAK HOUR VOLUME WARRANT

(COMMUNITY LESS THAN 10,000 POPULATION
OR ABOVE 40 MPH ON MAJOR STREET)

DOUGHERTY RD. - STONE CT.
HIGH VOLUME APPROACH - VPH

- Existing (498,4)
- Buildout (910,25)*
- Buildout with Stone Ct. Extension (990,55)*

* DISCOUNTING 100% WESTBOUND RIGHT TURNS PER MUTCD RULING IV-65.

WHISTLER AREA TRANSPORTATION STUDY

US 40 / DOUGHERTY RD. - STONE CT. SIGNAL WARRANT WORKSHEET

Scale	NTS	Date	11/4/96	Drawn by	RAC	Job #	96118	Figure	12
-------	-----	------	---------	----------	-----	-------	-------	--------	----

TECHNICAL APPENDIX

Level of Service Worksheets

SIG/Cinema V1.01

Winter Weekend PM Peak Hour

ORGANIZATION: TransPlan Associates, Inc.

Walton Creek/U.S. 40

SUMMARY

ANALYST: TransPlan-KJ

ANALYSIS DATE: 9-25-96

ANALYSIS PERIOD: PM Peak Hour

CASE: US40WTWW

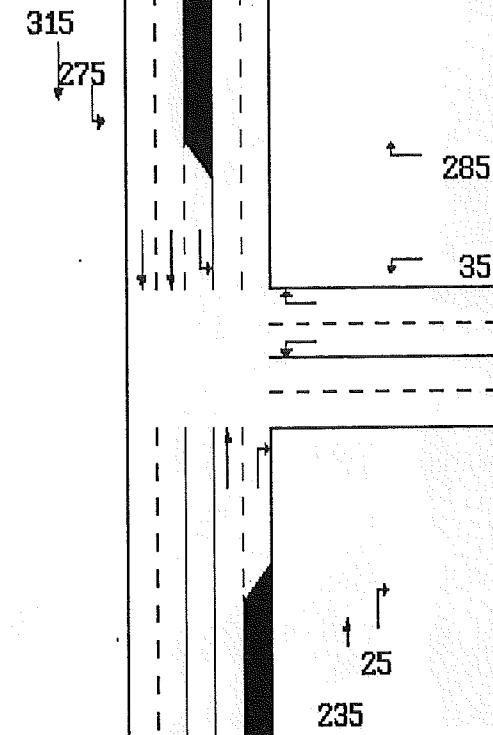
LANES		GEOMETRY: MOVEMENTS SERVICED BY LANE AND LANE WIDTHS (FT)											
App	Outbnd	Lane 1		Lane 2		Lane 3		Lane 4		Lane 5		Lane 6	
EB	0	L	12.0	R	12.0								
WB	2	0											
NB	2	T	12.0	R	12.0								
SB	3	2	L	12.0	T	12.0	T	12.0					

Data	EAST			WEST			NORTH			SOUTH		
	L	T	R	L	T	R	L	T	R	L	T	R
Mvt Vol (vph)	0	0	0	35	0	285	0	235	25	275	315	0
PHF				0.90		0.90		0.90	0.90	0.90	0.90	
%Hvy Vehicles				2		2		2	2	2	2	
Arrival Type				3		3		3	3	3	3	
RTOR Vol (vph)					284			20				0
Peds/Hour					0			0				0
% Grade					0			0				0
Parkers/Hour					0			0				0
Buses/Hour					0			0				0

SIGNAL SETTINGS: SEMI-ACTUATED							OPERATIONAL ANALYSIS			CYCLE LENGTH: 110.0		
PHASE:	1	2	3	4	5	6	7	8	PED ONLY			
EB												
WB	R			L R								
NB		TR										
SB	LT	LT										
GREEN	10.0	70.0	17.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
YELLOW	3.0	3.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
RED	0.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
LOST TIME PER PHASE:	3.0	SEC					LOST TIME PER CYCLE:	6.0	SEC			

CAPACITY ANALYSIS RESULTS									APPROACH:	
App	Lane Group	Cap (vph)	v/s Ratio	g/C Ratio	Lane Group	v/c Ratio	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS (sec/veh)
WB	* L	306	0.02	0.17	L	0.13	24.9	C	24.7	C
	R	461	0.00	0.29	R	0.00	17.9	C		
NB	T	1219	0.14	0.65	T	0.21	4.9	A	4.9	A
	R	1036	0.00	0.65	R	0.01	4.3	A		
SB	* Lper	514	0.19	0.68					2.4	A
	* Lpro	161	0.09	0.09	L	0.45	2.8	A		
	T	2878	0.10	0.77	T	0.13	2.0	A		

INTERSECT: DELAY = 4.0 SEC/VEH XC = 0.32 LOS = A Sum(v/s)CR = 0.31


HCM Summary Results for Case: US40WTWW Walton Creek/U.S. 40

Winter Weekend PM Peak Hour

PM Peak Hour

Version 1.01

- Lane Grp - - App -
 Delay L Delay L
 Lane X (sec/ 0 (sec/ 0
 Grp v/s v/c veh) S veh) S

WB L *0.02 0.13 24.9 C 24.7 C

R 0.00 0.00 17.9 C

NB T 0.14 0.21 4.9 Å 4.9 Å

R = 0.00 0.01 4.3 Å

SB Lper *0.19 2.4 A

Lpro *0.09 0.45# 2.8 A

T 0.10 0.13 2.0 Å

Int. 0.31 0.32 4.0 A #L TOTAL

10.1007/s00339-010-0637-2

Transplan Associates, Inc.

1375 Walnut St.

Suite 211

Boulder, CO 80302-

Ph: (303) 442-3130

Streets: (N-S) Whistler Road
 Major Street Direction... E/W
 Length of Time Analyzed... 60 (min)
 Analyst... Transplan-J
 Date of Analysis... 9/25/96
 Other Information... Winter Weekend PM Peak Hour.
 Two-Way Stop-controlled Intersection

No. Lanes	Stop Yield	Vehicles	PHF	Grade	Eastbound			Westbound			Southbound		
					L	T	R	L	T	R	L	T	R
0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0	> 1	< 0	0	> 1	< 0	0	> 1	< 0
Stop Yield	5	150	140	95	165	10	80	15	60	10	40	5	.95
Vehicles	.95	.95	.95	.95	.95	.95	.95	.95	.95	.95	.95	.95	0
PHF	0	0	0	0	0	0	0	0	0	0	0	0	0
Grade	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10
MC's (%)													
SVR's (%)													
CV's (%)													
PE's													

Adjustment Factors

Vehicle Handler	Critical Gap (tg)	Followup Time (tf)
Left Turn Major Road	5.00	2.10
Right Turn Minor Road	5.50	2.60
Through Traffic Minor Road	6.00	3.30
Left Turn Minor Road	6.50	3.40

Worksheet for Thru Intersection

Step 1: RT from Minor Street		Step 2: LT from Major Street		Step 3: Th from Minor Street		Step 4: LT from Minor Street	
Conflicting Flows: (vph)	232	180	165	1122	1122	540	556
Potential Capacity: (pcph)	1056	1056	0.93	0.93	0.93	515	505
Movement Capacity: (pcph)	0.93	0.93	0.93	0.93	0.93	0.81	0.86
Prob. of Queue-Free State:						0.85	0.90
Conflicting Flows: (vph)	305	165	1227	1399	1227	6	1122
Potential Capacity: (pcph)	1227	1227	1227	1227	1227	6	6
Movement Capacity: (pcph)	0.91	1.00	1.00	1.00	1.00	1.00	1.00
Prob. of Queue-Free State:							
Th Saturation Flow Rate: (pcph)	1700	1700	1700	1700	1700	1227	1227
RT Saturation Flow Rate: (pcph)	1700	1700	1700	1700	1700	3.2	3.2
Major LT Shared Lane Prob. of Queue-Free State:	0.90	0.90	0.90	0.90	0.90	0.2	0.2
Intersection Delay =							2.8 sec/veh

Intersection Performance Summary

HS: Unsignalized Intersections Release 2.1c 13.00 Page 1

HS: Unsignalized Intersections Release 2.1c 13.00 Page 2

HS: Unsignalized Intersections Release 2.1c 13.00 Page 3

TransPlan Associates, Inc.

135 Walnut St.

Suite 211

Bozeman, MT 80702

Ph: (305) 442-3130

Streets: (N-S) Village Drive

Major Street Direction:... E-W

Length of Time Analyzed:... 60 (min)

Analyst:... TransPlan-KJ

Date of Analysis:... 9/25/96

Other Information:... Winter Weekend PM Peak Hour.

Two-Way Stop-controlled Intersection

No. Lanes	Stop Yield	Volumes	PHF	Grade	Eastbound			Westbound			Northbound			Southbound		
					L	T	R	L	T	R	L	T	R	L	T	R
0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0	>	0	0	>	0	0	>	0	0	>	0
Stop Yield	Y	N	N	N	10	100	6	105	100	20	80	90	60	55	.55	0
Volumes	.55	.55	.55	.55	.55	.55	.55	.55	.55	.55	.55	.55	.55	.55	.55	0
PHF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MC's (%)	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10
S/R/R's (%)																
CV's (%)																
PE's																

Worksheet for Two Intersection

Step 1: RT from Minor Street		Step 2: LT from Major Street		Step 3: TH from Minor Street		Step 4: LT from Minor Street	
Conflicting Flows: (vph)	140	139	173	173	173	173	173
Potential Capacity: (pcph)	1176	1177	1418	1418	1418	1418	1418
Movement Capacity: (pcph)	1176	1177	0.98	0.98	0.98	0.98	0.98
Prob. of Queue-Free State:	0.94	0.94	0.96	0.96	0.96	0.96	0.96
Step 2: LT from Major Street	WB	EB	WB	WB	WB	WB	WB
Conflicting Flows: (vph)	184	184	1700	1700	1700	1700	1700
Potential Capacity: (pcph)	1401	1401	1700	1700	1700	1700	1700
Movement Capacity: (pcph)	1401	1401	0.99	0.99	0.99	0.99	0.99
Prob. of Queue-Free State:	0.95	0.95	0.98	0.98	0.98	0.98	0.98
Step 3: TH from Minor Street	NB	SB	NB	NB	NB	NB	NB
Conflicting Flows: (vph)	370	370	633	633	633	633	633
Potential Capacity: (pcph)	668	668	688	688	688	688	688
Capacity Adjustment Factor due to Impeding Movements	0.55	0.55	0.55	0.55	0.55	0.55	0.55
Movement Capacity: (pcph)	663	663	653	653	653	653	653
Prob. of Queue-Free State:	0.83	0.83	0.84	0.84	0.84	0.84	0.84
Step 4: LT from Minor Street	NB	SB	NB	NB	NB	NB	NB
Conflicting Flows: (vph)	416	416	400	400	400	400	400
Potential Capacity: (pcph)	608	608	621	621	621	621	621
Major LT, Minor TH							
Impedance Factor:	0.80	0.80	0.78	0.78	0.78	0.78	0.78
Adjusted Impedance Factor:	0.84	0.84	0.83	0.83	0.83	0.83	0.83
Capacity Adjustment Factor due to Impeding Movements	0.79	0.79	0.82	0.82	0.82	0.82	0.82
Movement Capacity: (pcph)	483	483	507	507	507	507	507

Adjustment Factors

Vehicle Maneuver	Critical Gap (ft)	Followup Time (ft)
Left Turn Major Road	5.00	2.10
Right Turn Minor Road	5.50	2.60
Through Traffic Minor Road	6.00	3.30
Left Turn Minor Road	6.50	3.40

HCS: Unsigned Intersections - Release 2.1c 14.HCO Page 1
 TransPlan Associates, Inc.
 1375 Walnut St.
 Suite 211
 Boulder, CO 80302-
 Ph: (303) 442-3130

HCS: Unsigned Intersections Release 2.1c 14.HCO Page 2
 HCS: Unsigned Intersections Release 2.1c 14.HCO Page 2

Two-Way Stop-controlled Intersection										
No. Lanes	Northbound			Southbound			Eastbound			Westbound
	L	T	R	L	T	R	L	T	R	
0 > 1	0	0	1 < 0	0	0 > 0	< 0	0	0	0	0
No. Lanes	0	70	N	110	40	5	.95	.95	.95	
Stop/Yield	.95	.95	0	0	0	0				
Volumes										
PHF										
Grade										
MC's (%)										
SU/RV's (%)										
CV's (%)										
PCE's										
	1.10						1.10		1.10	

Worksheet for TWS/C Intersection

Step 1: RT from Minor Street		WB		EB	
Conflicting Flows: (vph)					137
Potential Capacity: (pcph)					1180
Movement Capacity: (pcph)					1180
Prob. of Queue-Free State:					0.99
Step 2: LT from Major Street		SB		NB	
Conflicting Flows: (vph)					158
Potential Capacity: (pcph)					1441
Movement Capacity: (pcph)					1441
Prob. of Queue-Free State:					1.00
TH Saturation Flow Rate: (pcphpl)					1700
RT Saturation Flow Rate: (pcphpl)					
Major LT Shared Lane Prob. of Queue-Free State:					1.00
Step 4: LT from Minor Street		WB		EB	
Conflicting Flows: (vph)					211
Potential Capacity: (pcph)					799
Major LT Minor TH Impedance Factor:					
Adjusted Impedance Factor:					1.00
Capacity Adjustment Factor due to Impeding Movements					1.00
Movement Capacity: (pcph)					799

Adjustment Factors

Vehicle Maneuver	Critical Gap (ft)	Follow-up Time (tf)
Left Turn Major Road	5.00	2.10
Right Turn Minor Road	5.50	2.60
Through Traffic Minor Road	6.00	3.30
Left Turn Minor Road	6.50	3.40

Intersection Performance Summary

	Flow Rate (pcph)	Move Cap (pcph)	Avg. Delay (sec/veh)	95% Queue Length (veh)	LOS	Approach Delay (sec/veh)
EB L	29	799 >	846	4.4	0.0	A 4.4
EB R	6	1180 >				
NB L	0	1441		2.5	0.0	A 0.0

Intersection Delay = 0.5 sec/veh

Streets: (N-S) U.S. 40		(E-W) Dougherty Rd.	
Major Street Direction... NS			
Length of Time Analyzed... 60 (min)			
Analyst... TransPlan-KJ			
Date of Analysis... 9/25/96			
Other Information... Winter Weekend PM Peak Hour.			
Two-way Stop-controlled Intersection			
Northbound		Southbound	
L	T	L	T
0 > 1	0	0 < 0	0 > 0
No. Lanes	N	R	R
Stop/Yield	0	1	0
Volumes	0	285	3
PHF	.95	.95	.95
Grade	0	0	0
MC's (%)		2	2
SU/RV's (%)		.95	.95
CV's (%)		0	0
PCE's	1.10		1.10
Westbound			
L	T	R	R
0	0	0	0
No. Lanes	N	R	R
Stop/Yield	0	1	0
Volumes	0	285	3
PHF	.95	.95	.95
Grade	0	0	0
MC's (%)		2	2
SU/RV's (%)		.95	.95
CV's (%)		0	0
PCE's	1.10		1.10

Adjustment Factors

Vehicle Maneuver	Critical Gap (cg)	Follow-up Time (tf)
Left Turn Major Road	5.00	2.10
Right Turn Minor Road	5.50	2.60
Through Traffic Minor Road	6.00	3.30
Left Turn Minor Road	6.50	3.40

Worksheet for TWSC Intersection

Step 1: RT from Minor Street	WB	EB
Conflicting Flows: (vph)	302	
Potential Capacity: (pcph)	973	
Movement Capacity: (pcph)	973	
Prob. of Queue-Free State:	1.00	
Step 2: LT from Major Street	SB	NB
Conflicting Flows: (vph)	303	
Potential Capacity: (pcph)	1229	
Movement Capacity: (pcph)	1229	
Prob. of Queue-Free State:	1.00	
TH Saturation Flow Rate: (pcph)	1700	
RT Saturation Flow Rate: (pcph)		
Major LT Shared Lane Prob.:		
of Queue-Free State:		
Step 4: LT from Minor Street	WB	EB
Conflicting Flows: (vph)	522	
Potential Capacity: (pcph)	528	
Major LT, Minor TH		
Impedance Factor:		
Adjusted Impedance Factor:		
Capacity due to Impeding Movements		
Movement Capacity: (pcph)	1.00	
	528	

Intersection Performance Summary

	Flow Rate (pcph)	Movement	Move Cap (pcph)	Shared Cap (pcph)	Avg. Delay (sec/veh)	95% Queue (veh)	LOS (sec/veh)	Approach Delay (sec/veh)
EB L	2	528 >	685	5.3	0.0	B	5.3	
EB R	2	973 >						
NB L	0	1229			2.9	0.0	A	0.0

Intersection Delay = 0.0 sec/veh

ANALYST: TransPlan-KJ

ANALYSIS DATE: 10-30-96

ANALYSIS PERIOD: PM Peak Hour

CASE: US40WTWP

LANES		GEOMETRY: MOVEMENTS SERVICED BY LANE AND LANE WIDTHS (FT)					
App	Outbnd	Lane 1	Lane 2	Lane 3	Lane 4	Lane 5	Lane 6
EB	2	L 12.0	TR 12.0				
WB	2	LT 12.0	R 12.0				
NB	3	L 12.0	T 12.0	R 12.0			
SB	4	L 12.0	T 12.0	T 12.0	R 12.0		

Data	EAST			WEST			NORTH			SOUTH		
	L	T	R	L	T	R	L	T	R	L	T	R
Mvt Vol (vph)	35	10	10	130	15	395	15	535	125	410	625	50
PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
%Hvy Vehicles	2	2	2	2	2	2	2	2	2	2	2	2
Arrival Type	3	3	3	3	3	3	3	3	3	3	3	3
RTOR Vol (vph)		5		300			120			45		
Peds/Hour		0		0			0			0		
% Grade		0		0			0			0		
Parkers/Hour		5		0			0			0		
Buses/Hour		0		0			0			0		

SIGNAL SETTINGS: PRETIMED				DESIGN ANALYSIS				CYCLE LENGTH: 110.0			
PHASE:	1	2	3	4	5	6	7	8	PED ONLY		
EB	LTR										
WB	LTR	R									
NB			TR	LTR							
SB		LTR	TR								
GREEN	13.8	37.6	37.6	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0
YELLOW	4.0	4.0	4.0	2.3	0.0	0.0	0.0	0.0	0.0	0.0	
RED	0.0	0.0	0.0	1.7	0.0	0.0	0.0	0.0	0.0	0.0	
LOST TIME PER PHASE: 3.0 SEC				LOST TIME PER CYCLE: 9.0 SEC							

CAPACITY ANALYSIS RESULTS										APPROACH:	
App	Lane Group	Cap (vph)	v/s Ratio	g/C Ratio	Lane Group	v/c Ratio	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS	
EB	L	86	0.06	0.13	L	0.45	35.9	D	34.7	D	
	TR	208	0.01	0.13	TR	0.08	31.7	D			
WB	* LT	222	0.10	0.13	LT	0.73	42.2	E	29.7	D	
	R	811	0.07	0.51	R	0.13	10.7	B			
NB	L	96	0.01	0.05	L	0.18	37.8	D	22.5	C	
*	T	807	0.32	0.43	T	0.74	22.2	C			
	R	686	0.00	0.43	R	0.01	13.5	B			
SB	* L	621	0.26	0.35	L	0.73	26.9	D	12.6	B	
	T	2716	0.20	0.73	T	0.27	3.8	A			
	R	1155	0.00	0.73	R	0.01	3.1	A			

INTERSECT: DELAY = 18.2 SEC/VEH Xc = 0.73 LOS = C Sum(v/s) CR = 0.67

HCM Summary Results for Case: US40WTWP

Walton Creek/U.S. 40

Projected Winter Weekend PM Pk. Hr. PM Peak Hour

Version 1.01

- Lane Grp -				- App -					
		Delay L	Delay L						
Lane	X	(sec./ 0	(sec./ 0						
Grp	v/s	v/c	veh)	S	veh)	S			
EB L	0.06	0.45	35.9	D	34.7	D	625	50	410
TR	0.01	0.08	31.7	D					
WB LT	*0.10	0.73	42.2	E	29.7	D			
	R	0.07	0.13	10.7	B				
NB L	0.01	0.18	37.8	D	22.5	C	35		
	T	*0.32	0.74	22.2	C		10		
	R	0.00	0.01	13.5	B		10		
SB L	*0.26	0.73	26.9	D	12.6	B	15		
	T	0.20	0.27	3.8	A	1	125		
	R	0.00	0.01	3.1	A	2	535		
						3			
						4			
						14			
						4	38	4	
							37	4	
								5	22
Int.	0.67	0.73	18.2	C					

Transplan Associates, Inc.

1375 Walnut St.

Suite 211

Boulder, CO 80302-

Ph: (303) 442-3130

Streets: (N-S) Whistler Road

Major Street Direction: Bu

Length of Time Analyzed: 60 (min)

Analyst: Transplan-KU

Date of Analysis: 9/25/96

Other Information: Projected Winter Weekend PM Peak Hour.

Two-Way Stop-controlled Intersection

No. Lanes	Stop/Yield	Vehicles	Grds	NC's (%)	SU/RVs (%)	CV's (%)	PCE's	Step 1: RT from Minor Street				Step 2: LT from Major Street				Step 3: TH from Minor Street				Step 4: LT from Minor Street			
								Eastbound	Westbound	Northbound	Southbound	L	T	R	L	T	R	L	T	R	L	T	R
0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	
.20	.25	.25	.10	.20	.20	.10	.15	.15	.20	.25	.25	.25	.25	.25	.25	.25	.25	.25	.25	.25	.25	.25	
.95	.95	.95	0	.95	.95	0	0	.95	.95	.95	.95	.95	.95	.95	.95	.95	.95	.95	.95	.95	.95	.95	
0	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	

Worksheet for TWC Intersection

Step 1: RT from Minor Street

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

Step 2: LT from Major Street

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

Step 3: TH from Minor Street

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Capacity Adjustment Factor due to Impeding Movements

Movement Capacity: (pcph)

Prob. of Queue-Free State:

Step 4: LT from Minor Street

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Major LT, Minor TH

Impedance Factor:

Adjusted Impedance Factor:

Capacity Adjustment Factor due to Impeding Movements

Movement Capacity: (pcph)

HS: Unsignalized Intersections Release 2.1d 12PPI.HCO Page 1

HS: Unsignalized Intersections Release 2.1d 12PPI.HCO Page 2

HS: Unsignalized Intersections Release 2.1d 12PPI.HCO Page 3

Intersection Performance Summary

Avg. Queue

Total Queue

Avg. Cap Delay

Length LOS

Approach Delay (sec/veh)

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Move Rate (pcph)

Shared Cap (pcph)

Cap Delay (sec/veh)

Movement

Flow

Streets: (N-S) Village Drive
Major Street Direction... E/W
Length of Time Analyzed... 60 (min)
Analyst..... TransPlan-KJ
Date of Analysis..... 9/25/08
Other Information..... Projected Winter Weekend PM Peak Hour.
Two-Way Stop-controlled Intersection

No. Lanes	Eastbound			Westbound			Northbound			Southbound		
	L	T	R	L	T	R	L	T	R	L	T	R
0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0	0 > 1 < 0
Stop/Yield	115	115	N	10	125	N	160	120	20	80	120	15
Vol. PHF	.95	.95	.95	.95	.95	.95	.95	.95	.95	.95	.95	.95
Grade	0	0	0	0	0	0	0	0	0	0	0	0
NY's (%)	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10
SV's (%)												
Q's (%)												
PE's (%)												

1.10 1.10 1.10 1.10 1.10 1.10 1.10

Worksheet for TlSC Intersection

HS: Unsignalized Intersections Release 2.1d 13P.MHD Page 2

Step 1: RT from Minor Street

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.98

0.87

Step 2: LT from Major Street

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.99

0.90

Step 3: TH from Minor Street

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Capacity Adjustment Factor due to Impeding Movements

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.99

0.88

Step 4: LT from Minor Street

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Major LT, Minor TH

Impedance Factor:

Adjusted Impedance Factor:

Capacity Adjustment Factor due to Impeding Movements

Movement Capacity: (pcph)

0.72

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

0.71

Intersection Performance Summary

HS: Unsignalized Intersections Release 2.1d 13P.MHD Page 3

Avg. Queue

95% Queue

Length LOS

Approach

Delay

(sec/veh)

Flow Rate

(pcph)

Move Cap

(pcph)

Shared Cap

(pcph)

Delay (sec/veh)

Movement

Step 1: NB

200

169

137

137

0.87

Step 2: NB

185

230

>

311.0

18.6

F

111.0

Step 3: NB

135

135

>

3.6

0.5

A

Step 4: NB

135

135

>

2.9

0.0

A

0.9

0.1

Step 1: SB

135

135

>

31.5

sec/veh

Streets: (N-S) Village Drive
 Major Street Direction: NS
 Length of Time Analyzed: 60 (min)
 Analyst: TransPlan-KJ
 Date of Analysis: 9/25/96
 Other Information: Projected Winter Weekend PM Peak Hour.
 Two-way Stop-controlled Intersection

No. Lanes	Northbound			Southbound			Eastbound			Westbound		
	L	T	R	L	T	R	L	T	R	L	T	R
0 > 1	0	1	< 0	0	> 0	< 0	0	0	0	0	0	0
Stop/Yield	N			N								
Volumes	5	20		50	125		95		5			
PHF	.95			.95			.95					
Grade	0			0			0					
MC's (%)												
SU/RV's (%)												
CV's (%)												
PCE's												
	1.10						1.10		1.10			

Adjustment Factors

Vehicle Maneuver	Critical Gap (tg)	Follow-up Time (tf)
Left Turn Major Road	5.00	2.10
Right Turn Minor Road	5.50	2.60
Through Traffic Minor Road	6.00	3.30
Left Turn Minor Road	6.50	3.40

Intersection Performance Summary

Vehicle Maneuver	Flow Rate (pcph)	Movement (pcph)	Move Cap (pcph)	Shared Cap (pcph)	Avg. Delay (sec/veh)	95% Queue Length (veh)	LOS	Approach Delay (sec/veh)
EB L	110	869	>	882	4.7	0.5	A	4.7
EB R	6	1205	>					
NB L	6	1399			2.6	0.0	A	0.5

Intersection Delay = 1.6 sec/veh

TransPlan Associates, Inc.

1375 Walnut St.

Suite 211

Boulder, CO 80302-
Ph: (303) 442-3130

Streets: (N-S) Whistler Road
Major Street Direction:... NS
Length of Time Analyzed... 60 (min)
Analyst:... TransPlan-KJ
Date of Analysis... 9/25/96
Other Information...Projected Winter Weekend PM Peak Hour.
Two-Way Stop-controlled Intersection

No. Lanes	Northbound Stop/yield Volumes	Southbound Stop/yield Volumes	Eastbound			Westbound		
			L	T	R	L	T	R
0 > 1	0	0	1 < 0	0 > 0	< 0	0	0	0
No. Lanes	10	125	N	195	45	25	5	.95
Stop/yield Volumes	.95	.95		.95	.95	0		
PHF								
MC's (%)								
SU/RV's (%)								
PCE's	1.10							

Adjustment Factors

Critical Gap (tg)
Follow-up Time (tf)

Vehicle Maneuver

Left Turn Major Road 5.00 2.10
Right Turn Minor Road 5.50 2.60
Through Traffic Minor Road 6.00 3.30
Left Turn Minor Road 6.50 3.40

Worksheet for TWS/C Intersection

Step 1: RT from Minor Street		WB	EB
Conflicting Flows: (vph)		228	
Potential Capacity: (pcph)		1061	
Movement Capacity: (pcph)		1061	
Prob. of Queue-Free State: 0.99			
Step 2: LT from Major Street		SB	NB
Conflicting Flows: (vph)		252	
Potential Capacity: (pcph)		1300	
Movement Capacity: (pcph)		1300	
Prob. of Queue-Free State: 0.99			
TH Saturation Flow Rate: (pcphpl)			
RT Saturation Flow Rate: (pcphpl)			
Major LT Shared Lane Prob. of Queue-Free State: 0.99			
Step 4: LT from Minor Street		WB	EB
Conflicting Flows: (vph)		372	
Potential Capacity: (pcph)		645	
Major LT Minor TH Impedance Factor: 0.99			
Adjusted Impedance Factor: 0.99			
Capacity Adjustment Factor due to Impeding Movements 0.99			
Movement Capacity: (pcph)		639	

Intersection Performance Summary

	Flow Rate (pcph)	Movement (pcph)	Move Cap (pcph)	Avg Delay (sec/veh)	95% Queue (veh)	LOS	Approach Delay (sec/veh)
EB L	29	639	>	686	5.5	0.0	B 5.5
EB R	6	1061	>				
NB L	12	1300		2.8	0.0	A	0.2

Intersection Delay = 0.5 sec/veh

Worksheet for TMC Intersection

Step 1: RT from Minor Street

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.88

0.99

Step 2: LT from Major Street

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.89

0.99

Step 3: TH from Minor Street

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Capacity Adjustment Factor

due to Impeding Movements

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.88

0.88

0.88

0.88

Step 4: LT from Minor Street

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Major LT, Minor TH

Impedance Factor:

Adjusted Impedance Factor

due to Impeding Movements

Movement Capacity: (pcph)

1.00

1.00

1.00

1.00

Intersection Performance Summary

Flow Rate (pcph)

Move Cap (pcph)

Shared Cap (pcph)

Avg. Queue Delay (sec/veh)

95% Queue Length (veh)

LOS

Approach Delay (sec/veh)

B L 23

B T 0

311 >

306

13.3

0.4

C

13.3

B R 12

816 >

B L 29

B T 0

313 >

934

4.4

A

6.4

B L 6

1019

3.6

A

0.1

B R 128

1151

3.5

A

0.7

B S L

128

3.5

A

0.7

B S R

128

3.5

A

0.7

B S T

128

3.5

A

0.7

B T R

128

3.5

A

0.7

B T S

128

3.5

A

0.7

B T L

128

3.5

A

0.7

B L T

128

3.5

A

0.7

B L S

128

3.5

A

0.7

B S T

128

3.5

A

0.7

B T R

128

3.5

A

0.7

B S L

128

3.5

A

0.7

B T S

128

3.5

A

0.7

B L R

128

3.5

A

0.7

B S T

128

3.5

A

0.7

B T R

128

3.5

A

0.7

B S L

128

3.5

A

0.7

B T S

128

3.5

A

0.7

B L R

128

3.5

A

0.7

B S T

128

3.5

A

0.7

B T R

128

3.5

A

0.7

B S L

128

3.5

A

0.7

B T S

128

3.5

A

0.7

B L R

128

3.5

A

0.7

B S T

128

3.5

A

0.7

B T R

128

3.5

A

0.7

B S L

128

3.5

A

0.7

B T S

128

3.5

A

0.7

B L R

128

3.5

A

0.7

B S T

128

3.5

A

0.7

B T R

128

3.5

A

0.7

B S L

128

3.5

A

0.7

B T S

128

3.5

A

0.7

B L R

128

3.5

A

0.7

B S T

128

3.5

A

0.7

B T R

128

3.5

A

0.7

B S L

128

3.5

A

0.7

B T S

128

3.5

A

0.7

B L R

128

3.5

A

0.7

B S T

128

3.5

A

0.7

B T R

128

3.5

A

0.7

B S L

128

3.5

A

0.7

B T S

128

3.5

A

0.7

B L R

128

3.5

A

0.7

B S T

128

3.5

A

0.7

B T R

128

3.5

A

0.7

B S L

128

3.5

A

0.7

B T S

128

3.5

A

0.7

B L R

128

3.5

A

0.7

B S T

128

3.5

A

0.7

B T R

128

3.5

A

0.7

B S L

128

3.5

A

0.7

B T S

128

SIG/Cinema V1.01

Buidout with Stone Ct. Extension

ORGANIZATION: TransPlan Associates, Inc.

Walton Creek/U.S. 40

SUMMARY

ANALYST: TransPlan-KJ

ANALYSIS DATE: 10-30-96

ANALYSIS PERIOD: PM Peak Hour

CASE: US40WTWS

LANES		GEOMETRY: MOVEMENTS SERVICED BY LANE AND LANE WIDTHS (FT)											
App	Outbnd	Lane 1		Lane 2		Lane 3		Lane 4		Lane 5		Lane 6	
EB	2	L	12.0	TR	12.0								
WB	2	LT	12.0	R	12.0								
NB	3	L	12.0	T	12.0	R	12.0						
SB	4	L	12.0	T	12.0	T	12.0	R	12.0				

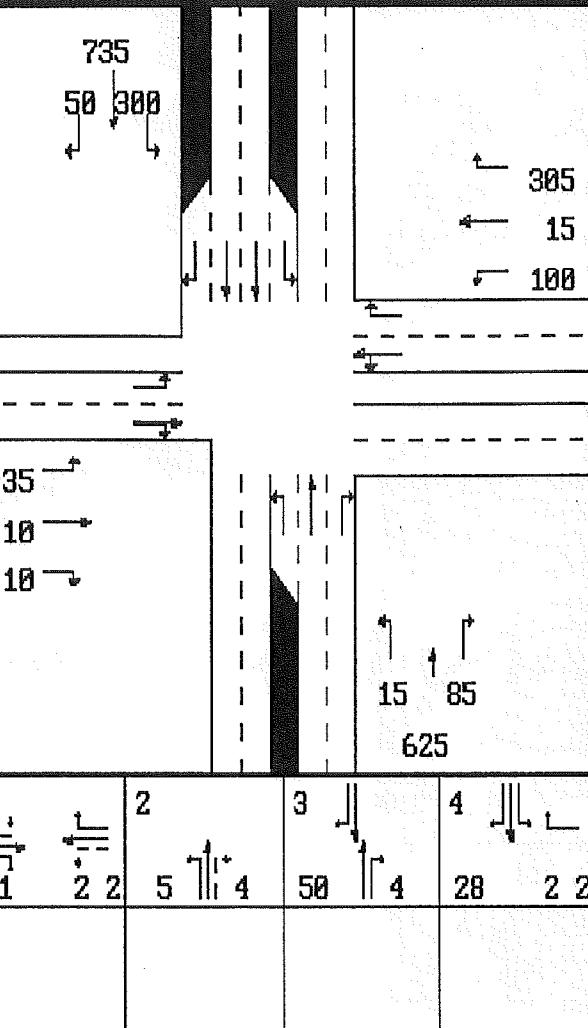
Data	EAST			WEST			NORTH			SOUTH		
	L	T	R	L	T	R	L	T	R	L	T	R
Mvt Vol (vph)	35	10	10	100	15	305	15	625	85	300	735	50
PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
%Hvy Vehicles	2	2	2	2	2	2	2	2	2	2	2	2
Arrival Type	3	3	3	3	3	3	3	3	3	3	3	3
RTOR Vol (vph)		5		285			80			45		
Peds/Hour		0		0			0			0		
% Grade		0		0			0			0		
Parkers/Hour		5		0			0			0		
Buses/Hour		0		0			0			0		

SIGNAL SETTINGS: PRETIMED				DESIGN ANALYSIS				CYCLE LENGTH: 110.0					
PHASE:	1	2	3	4	5	6	7	8	PED ONLY				
EB	LTR												
WB	LTR												
NB		LTP		TR									
SB			TR		LTR								
GREEN	11.1	5.0	49.9	28.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
YELLOW	2.3	4.0	4.0	2.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
RED	1.7	0.0	0.0	1.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
LOST TIME PER PHASE:	3.0	SEC			LOST TIME PER CYCLE:	9.0	SEC						

CAPACITY ANALYSIS RESULTS										APPROACH:	
App	Lane Group	Cap (vph)	v/s Ratio	g/C Ratio	Lane Group	v/c Ratio	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS	
EB	L	84	0.05	0.11	L	0.46	37.8	D	36.5	D	
	TR	170	0.01	0.11	TR	0.09	33.5	D			
WB	* LT	182	0.08	0.11	LT	0.70	43.6	E	39.5	D	
	R	634	0.01	0.40	R	0.03	15.2	C			
NB	L	96	0.01	0.05	L	0.18	37.8	D	15.7	C	
*	T	1014	0.37	0.54	T	0.68	15.2	C			
	R	819	0.00	0.52	R	0.01	9.8	B			
SB	* L	467	0.19	0.26	L	0.71	31.4	D	11.1	B	
	T	2808	0.23	0.75	T	0.31	3.3	A			
	R	1194	0.00	0.75	R	0.01	2.5	A			

INTERSECT: DELAY = 15.3 SEC/VEH Xc = 0.70 LOS = C Sum(v/s) CR = 0.64

HCM Summary Results for Case: US40WTWS


Walton Creek/U.S. 40

Buildout with Stone Ct. Extension

PM Peak Hour

Version 1.01

- Lane Grp - - App -				Lane Grp				Lane Grp			
Lane		Delay L X (sec/ 0	Delay L S (sec/ 0	Lane		Delay L X (sec/ 0	Delay L S (sec/ 0	Lane		Delay L X (sec/ 0	Delay L S (sec/ 0
Grp	v/s	v/c	veh)	S	veh)	S	veh)	S	veh)	S	veh)
EB L	0.05	0.46	37.8 D		36.5 D						
TR	0.01	0.09	33.5 D								
WB LT	*0.08	0.70	43.6 E	39.5 D							
R	0.01	0.03	15.2 C								
NB L	0.01	0.18	37.8 D	15.7 C							
T	*0.37	0.68	15.2 C								
R	0.00	0.01	9.8 B								
SB L	*0.19	0.71	31.4 D	11.1 B	1	2	3	4			
T	0.23	0.31	3.3 A		11	2 2	5 4	50 4	28	2 2	
R	0.00	0.01	2.5 A								
Int. 0.64 0.70 15.3 C											

TransPlan Associates, Inc.

1375 Walnut St.

Suite 211

Boulder, CO 80302-

Ph: (303) 442-3130

Streets: (N-S) Mistletoe Road

Major Street Direction: E-W

Length of Time Analyzed: 60 (min)

Analyst: TransPlan-KJ

Date of Analysis: 9/25/06

Other Information: Buildout Winter Weekend PM Peak Hour S

tore Ct. Extension

No. Lanes	Westbound			Northbound			Southbound		
	L	T	R	L	T	R	L	T	R
0 > 1 < 0	0	> 1	< 0	1	1	< 0	1	1	< 0
Stop/Yield	20	25	15	110	20	10	5	10	45
PF	.95	.95	.95	.95	.95	.95	.95	.95	.95
Grade	0	0	0	0	0	0	0	0	0
NC's (%)	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10
SURV's (%)	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10
CV's (%)	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10
PCF's	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10

Worksheet for TSC Intersection

HS: Unsignalized Intersections Release 2.1d 22P.H00 Page 1

HS: Unsignalized Intersections Release 2.1d 22P.H00 Page 2

HS: Unsignalized Intersections Release 2.1d 22P.H00 Page 3

Step 1: RT from Minor Street		Step 2: LT from Major Street		Step 3: TH from Minor Street		Step 4: LT from Minor Street	
Conflicting Flows: (vph)	345	280	277	271	13.9	12	10.8
Potential Capacity: (pcph)	926	999	98	271	0.0	0.0	0.0
Movement Capacity: (pcph)	926	999	98	271	0.0	0.0	0.0
Prob. of Queue-Free State:	0.91	0.98	0.97	0.97	0.0	0.0	0.0
Conflicting Flows: (vph)	411	255	335	335	0.0	0.0	0.0
Potential Capacity: (pcph)	1092	1254	999	999	0.0	0.0	0.0
Movement Capacity: (pcph)	1092	1254	999	999	0.0	0.0	0.0
Prob. of Queue-Free State:	0.88	0.98	0.97	0.97	0.0	0.0	0.0
TH Saturation Flow Rate: (pcph)	700	700	1254	1254	0.0	0.0	0.0
RT Saturation Flow Rate: (pcph)	1700	1700	1092	1092	0.0	0.0	0.0
Major LT Shared Lane Prob.	0.70	0.70	0.97	0.97	0.0	0.0	0.0
Prob. of Queue-Free State:	0.86	0.98	0.97	0.97	0.0	0.0	0.0
Conflicting Flows: (vph)	767	823	432	432	0.0	0.0	0.0
Potential Capacity: (pcph)	767	823	432	432	0.0	0.0	0.0
Capacity Adjustment Factor due to Impeding Movements	0.84	0.84	0.84	0.84	0.0	0.0	0.0
Movement Capacity: (pcph)	362	362	335	335	0.0	0.0	0.0
Prob. of Queue-Free State:	0.94	0.95	0.95	0.95	0.0	0.0	0.0

Adjustment Factors

Vehicle	Critical Gap (ft)	Follow-up Time (ft)	Conflicting Flows: (vph)	Potential Capacity: (pcph)	Major LT, Minor TH	Impedance Factor:	Adjusted Impedance Factor:	Capacity Adjustment Factor due to Impeding Movements	Movement Capacity: (pcph)
Left Turn Major Road	5.00	2.10	786	812	0.71	0.79	0.77	0.77	0.77
Right Turn Minor Road	5.50	2.60	366	359	0.77	0.83	0.77	0.77	0.77
Through Traffic Minor Road	6.00	3.30	0	0	0.76	0.76	0.76	0.76	0.76
Left Turn Minor Road	6.50	3.40	277	277	0	0	0	0	0

Streets: (N-S) Village Drive
Major Street Direction... E-W
Length of Time Analyzed... 60 (min)
Analyst..... TransPlan-KJ
Date of Analysis... 9/25/06
Other Information..... Builtout Winter Weekend PM Peak Hour - S

Two-Way Stop-controlled Intersection

No. Lanes	Eastbound			Westbound			Southbound			Northbound		
	L	T	R	L	T	R	L	T	R	L	T	R
0 > 1 < 0	0	> 1	< 0	0	> 1	< 0	0	> 1	< 0	0	> 1	< 0
Stp/Yield	115	115	N	10	125	N	130	120	20	80	120	125
PhF	.95	.95		.95	.95		.95	.95		.95	.95	
Grade	0	0		0	0		0	0		0	0	
NC's (%)	1.10	1.10		1.10	1.10		1.10	1.10		1.10	1.10	
SJ/RV's (%)												
CV's (%)												
POE's												

Worksheet for TSC Intersection

HS: Unsigned Intersections Release 2.1d 29.400 Page 3												
HS: Unsigned Intersections Release 2.1d 29.400 Page 2												
Intersection Performance Summary												
Step 1: RT from Minor Street	NB	SB										
Conflicting Flows: (vh)	184	169										
Potential Capacity: (cpph)	1117	1137										
Movement Capacity: (cpph)	1117	1137										
Prob. of Quee-Free State:	0.98	0.87										
Step 2: LT from Major Street	WB	EB										
Conflicting Flows: (vh)	247	206										
Potential Capacity: (cpph)	1317	1337										
Movement Capacity: (cpph)	1307	1337										
Prob. of Quee-Free State:	0.99	0.90										
TH Saturation Flow Rate: (cpph)	1700	1700										
RT Saturation Flow Rate: (cpph)	1700	1700										
Major LT Shared Lane Prtd. of Quee-Free State:	0.99	0.89										
Step 3: TH from Minor Street	NB	SB										
Conflicting Flows: (vh)	522	548										
Potential Capacity: (cpph)	581	563										
Capacity Adjustment Factor due to Impeding Movements	0.88	0.88										
Movement Capacity: (cpph)	509	494										
Prob. of Quee-Free State:	0.73	0.72										
Step 4: LT from Minor Street	NB	SB										
Conflicting Flows: (vh)	614	558										
Potential Capacity: (cpph)	457	503										
Major LT, Minor Th												
Impediment Factor:	0.63	0.64										
Adjusted Impediment Factor:	0.71	0.72										
Capacity Adjustment Factor due to Impeding Movements	0.62	0.70										
Movement Capacity: (cpph)	280	354										

Adjustment Factors

Vehicle Maneuver	Critical Gap (ft)	Follow-up Time (s)
Left Turn Major Road	5.00	2.10
Right Turn Minor Road	5.50	2.60
Through Traffic Minor Road	6.00	3.30
Left Turn Minor Road	6.50	3.40

		WB		EB	
Step 1: RT from Minor Street					
Conflicting Flows: (vph)					102
Potential Capacity: (pcph)					1229
Movement Capacity: (pcph)					1229
Prob. of Queue-Free State:					0.99
Step 2: LT from Major Street					
Conflicting Flows: (vph)					158
Potential Capacity: (pcph)					1441
Movement Capacity: (pcph)					1441
Prob. of Queue-Free State:					0.99
TH Saturation Flow Rate: (pcphpl)					1700
RT Saturation Flow Rate: (pcphpl)					
Major LT Shared Lane Prob.					
Major LT Shared Lane Prob. of Queue-Free State:					0.99
Step 4: LT from Minor Street					
Conflicting Flows: (vph)					130
Potential Capacity: (pcph)					890
Major LT, Minor TH					
Impedance Factor:					0.99
Adjusted Impedance Factor:					0.99
Capacity Adjustment Factor due to Impeding Movements					
Movement Capacity: (pcph)					0.99
					883
Intersection Performance Summary					
Vehicle Maneuver					
Left Turn Major Road	5.00	2.10			
Right Turn Minor Road	5.50	2.60			
Through Traffic Minor Road	6.00	3.30			
Left Turn Minor Road	6.50	3.40			
Flow Rate (pcph)					
Move Cap (pcph)					
Shared Cap (pcph)					
Avg. Queue Length (veh)					
95% Queue Length (veh)					
Approach Delay (sec/veh)					
LOS (sec/veh)					

Adjustment Factors

Vehicle Maneuver	Critical Gap (tg)	Follow-up Time (tf)
Left Turn Major Road	5.00	2.10
Right Turn Minor Road	5.50	2.60
Through Traffic Minor Road	6.00	3.30
Left Turn Minor Road	6.50	3.40
EB L	87	883 >
EB R	12	1229 >
NB L	12	1441
Intersection Delay =		1.5 sec/veh

Streets: (N-S) Whistler Road (E-W) Stone Lane
Major Street Direction: NS
Length of Time Analyzed: 60 (min)
Analyst: TransPlan-KJ
Date of Analysis: 9/25/96
Other Information: Buildout Winter Weekend PM Peak Hour- Stone Ct. Extension

Two-way Stop-controlled Intersection

No. Lanes	Stop/Field	Volumes	PHF	Grade	MC's (%)	SL/RV's (%)	CV's (%)	PCE's	Southbound				Eastbound				Westbound			
									L	T	R	L	T	R	L	T	R			
0 > 1	0	0							0	< 0	0	0	> 0	< 0	0	0	0			
45	35	N							65	85	N	80	95	0	60	.95	0			

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 1: RT from Minor Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 2: LT from Major Street

SB

NB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 3: LT from Minor Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 4: LT from Major Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 5: LT from Major Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 6: LT from Minor Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 7: LT from Major Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 8: LT from Minor Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 9: LT from Major Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 10: LT from Minor Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 11: LT from Major Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 12: LT from Minor Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 13: LT from Major Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 14: LT from Minor Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 15: LT from Major Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 16: LT from Minor Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 17: LT from Major Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 18: LT from Minor Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 19: LT from Major Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 20: LT from Minor Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 21: LT from Major Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 22: LT from Minor Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 23: LT from Major Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 24: LT from Minor Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 25: LT from Major Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 26: LT from Minor Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 27: LT from Major Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 28: LT from Minor Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 29: LT from Major Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 30: LT from Minor Street

WB

EB

Conflicting Flows: (vph)

Potential Capacity: (pcph)

Movement Capacity: (pcph)

Prob. of Queue-Free State:

0.94

Step 31: LT from Major Street

WB

EB

Conflicting Flows: (vph)

Pot

Streets: (N-S) U.S. 40 (E-W) Daugherty Rd.
 Major Street Direction: NS
 Length of Time Analyzed: 60 (min)
 Analyst: TransPlan KJ
 Date of Analysis: 9/25/96
 Other Information: Buildout Winter Weekend PM Peak Hour - S tone Ct. Extension

Two-Way Stop-controlled Intersection

No. Lanes	Northbound			Southbound			Eastbound			Westbound		
	L	T	R	L	T	R	L	T	R	L	T	R
No. Lanes	1	1	1	1	1	1	0	> 1	< 0	0	> 1	1
Stop/Yield												
Volumes	5	280	5	220	400	20	0	10	55	0	190	
PF	.55	.55	.55	.55	.55	.55	.55	.55	.55	.55	.55	
Grade	0		0			0			0			
NC's (%)												
SURVs (%)												
CV's (%)												
POE's												
	1.10		1.10		1.10		1.10	1.10	1.10	1.10	1.10	

Worksheet for TSC Intersection

Step 1: RT from Minor Street

Conflicting Flows: (vph)
 Potential Capacity: (pcph)
 Movement Capacity: (pcph)
 Prob. of Queue-Free State: 0.78

Step 2: LT from Major Street

Conflicting Flows: (vph)
 Potential Capacity: (pcph)
 Movement Capacity: (pcph)
 Prob. of Queue-Free State: 0.78

Step 3: RT from Minor Street

Conflicting Flows: (vph)
 Potential Capacity: (pcph)
 Capacity Adjustment Factor due to Impeding Movements
 Movement Capacity: (pcph)
 Prob. of Queue-Free State: 1.00

Step 4: LT from Minor Street

Conflicting Flows: (vph)
 Potential Capacity: (pcph)
 Major LT, Minor RT
 Impedance Factor: 0.77
 Adjusted Impedance Factor: 0.83
 Capacity Adjustment Factor due to Impeding Movements
 Movement Capacity: (pcph)

Adjustment Factors

Vehicle
Maneuver

Critical
Gap (ft)

Follow-up
Time (ft)

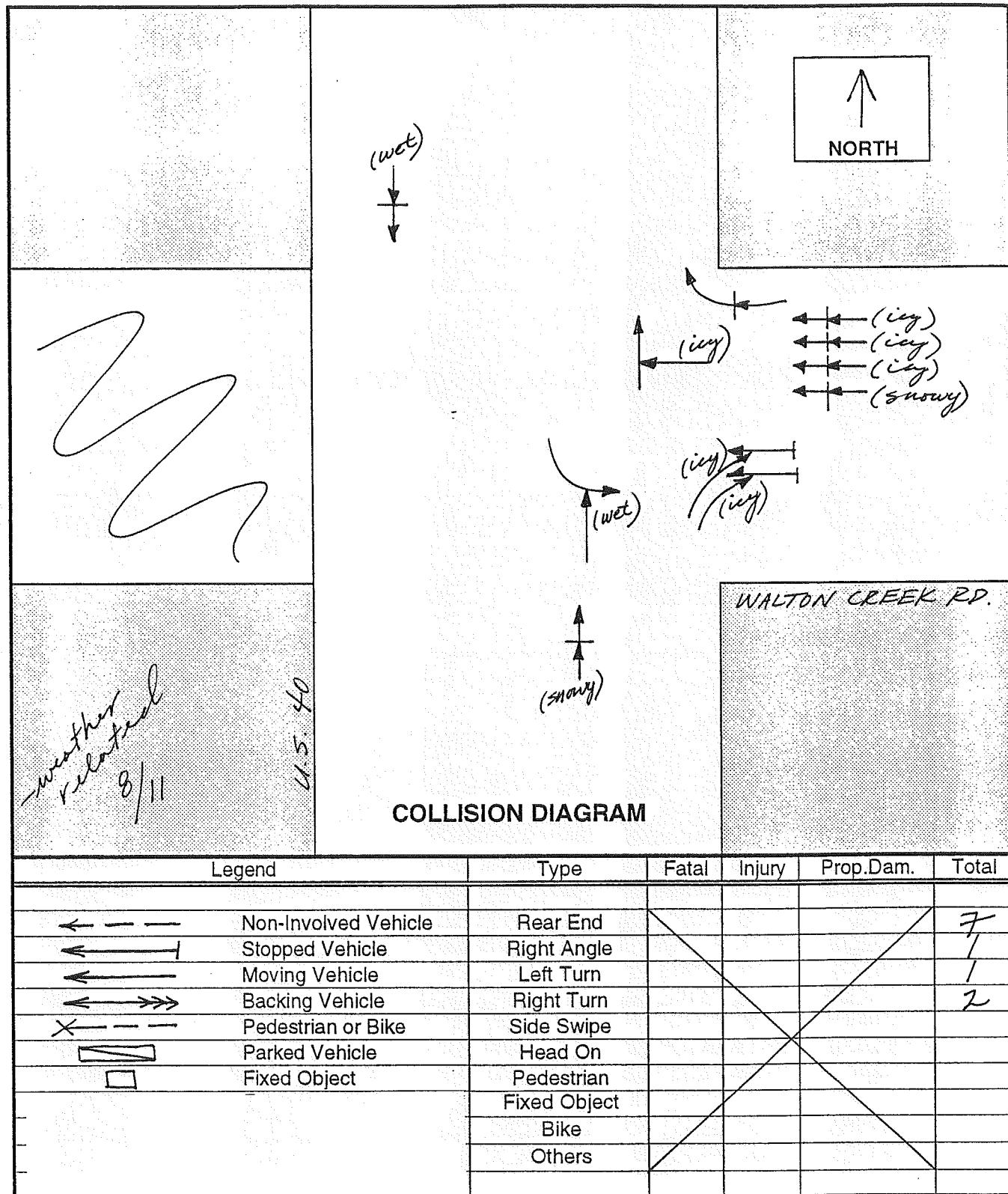
Left Turn Major Road
Right Turn Minor Road
Through Traffic Minor Road
Left Turn Minor Road

5.00

2.10

2.60

3.30

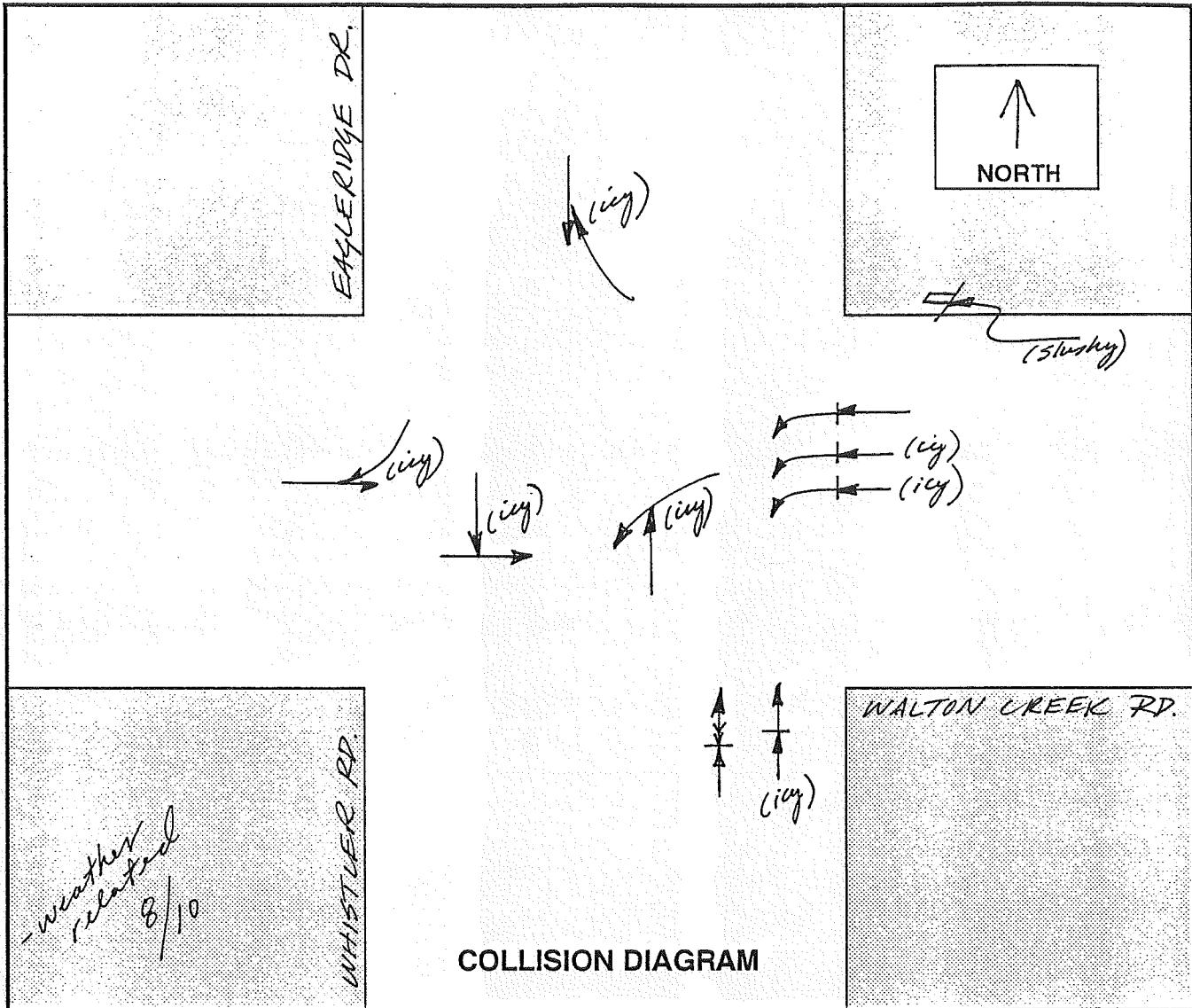

3.40

Intersection Performance Summary

Flow Movement	Move Rate (pcph)	Shared Cap (pcph)	Avg. Cap (pcph)	Queue (sec/veh)	% Queue	Length (ft)	LOS	Approach Delay (sec/veh)
WB L	25	164	>	227	18.7	0.6	C	18.7
WB T	0	266	>	227	18.7	0.6	D	18.7
WB R	220	931	>	4.7	1.0	A	A	8.3
NB L	6	1056	3.4	0.0	0.0	A	A	0.0
SB L	25	1151	4.0	1.0	1.0	A	A	1.4

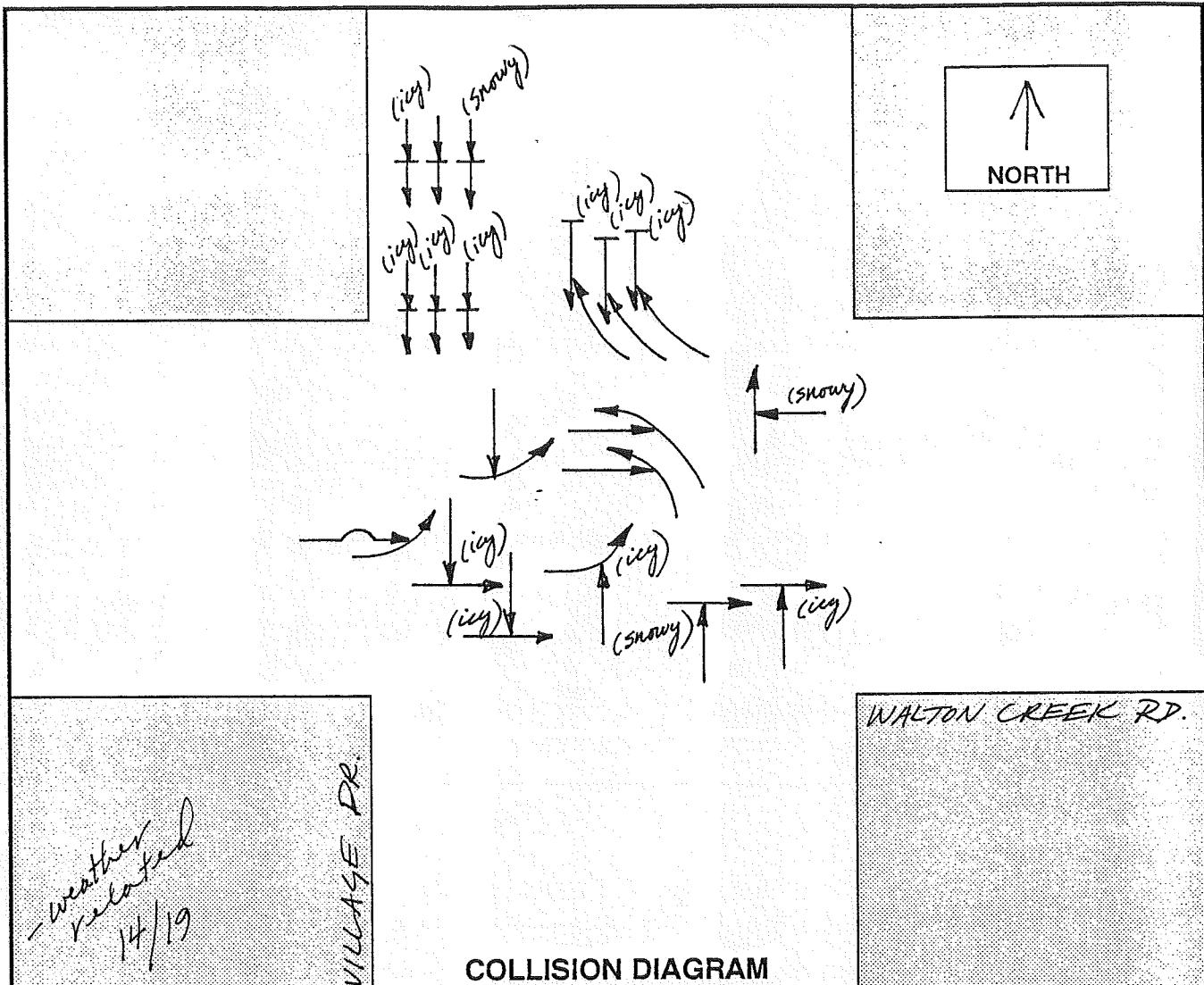
Intersection Delay = 2.8 sec/veh

Intersection Collision Diagrams


Intersection: U.S. 40 / WALTON CREEK ROAD

Study Dates: FROM SEPT. 1993

TO SEPT. 1996


Date of Study: OCTOBER 31, 1996

By: KLJ

Legend	Type	Fatal	Injury	Prop.Dam.	Total
← — —	Rear End				5
← — — —	Right Angle				1
← — — — —	Left Turn				1
← — — — — —	Right Turn				2
X — — —	Side Swipe				2
— — — — —	Head On				1
— — — — — —	Pedestrian				1
— — — — — — —	Fixed Object				1
— — — — — — — —	Bike				
— — — — — — — — —	Others				

Intersection: WHISTLER ROAD / WALTON CREEK ROAD
 Study Dates: FROM SEPT. 1993 TO SEPT. 1996
 Date of Study: OCTOBER 31, 1996 By: KLJ

Legend	Type	Fatal	Injury	Prop.Dam.	Total
← — —	Rear End				6
← — — —	Right Angle				5
← — —	Left Turn				5
← — — — —	Right Turn				3
X — — —	Side Swipe				
— — — —	Head On				
— — — — —	Pedestrian				
— — — — — —	Fixed Object				
— — — — — — —	Bike				
— — — — — — — —	Others				

Intersection: VILLAGE DRIVE / WALTON CREEK ROAD
 Study Dates: FROM SEPT. 1993 TO SEPT. 1996
 Date of Study: OCTOBER 31, 1996 By: KJ