

MEMORANDUM

To: CAP Steering Committee

From: CAP Project Team

Date: September 17, 2025

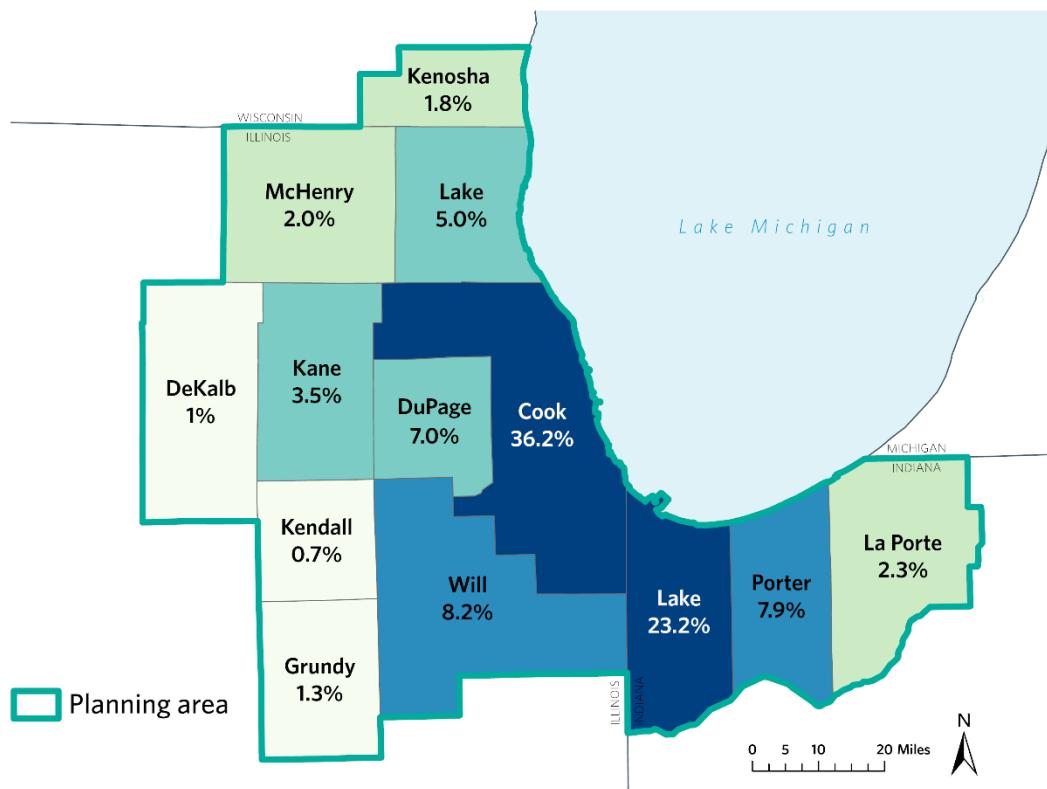
Subject: Update on the Comprehensive Climate Action Plan for Greater Chicago

The project team seeks to update the steering committee on the development of the Comprehensive Climate Action Plan (CAP) for Greater Chicago. Since the October 2024 steering committee meeting, the team has (with substantial stakeholder and sector-specific working group input) finalized the greenhouse gas (GHG) inventory, identified objectives and strategies to reduce greenhouse gas (GHG) emissions, and modeled reduction scenarios for their ability to both reach the plan's reduction goals and achieve air quality and public health benefits.

At the September steering committee meeting, the project team will provide an update on progress to date, share final modeling results for both economy-wide and sector emissions reductions and benefits, and seek input on a subset of priority GHG reduction strategies.

Table of Contents

1. Project updates	2
2. Final emissions modeling results.....	4
3. Key reduction strategies.....	7
4. Benefits of climate action.....	10
5. Next steps	11
Appendix A: Modeling reference policies, programs, and other analyses	12
Appendix B: Working group feedback on initial modeling results and implementation	12
Appendix C: Community engagement activity summary	14
Endnotes	16


1. Project updates

1.1. Greenhouse gas inventory

The project team finalized the 2020 Greenhouse Gas Inventory¹ for the 13-county planning area. The inventory update incorporated revised state-level eGRID electricity emission factors, which affected emissions calculations in key sectors.² This change was made to more accurately reflect local emission factors and better align with other tools used to model future electricity emissions.

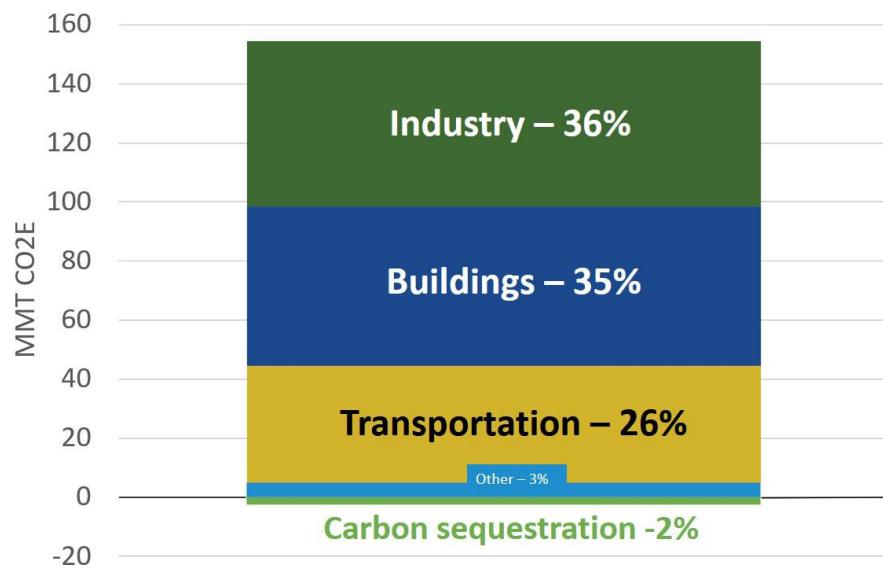
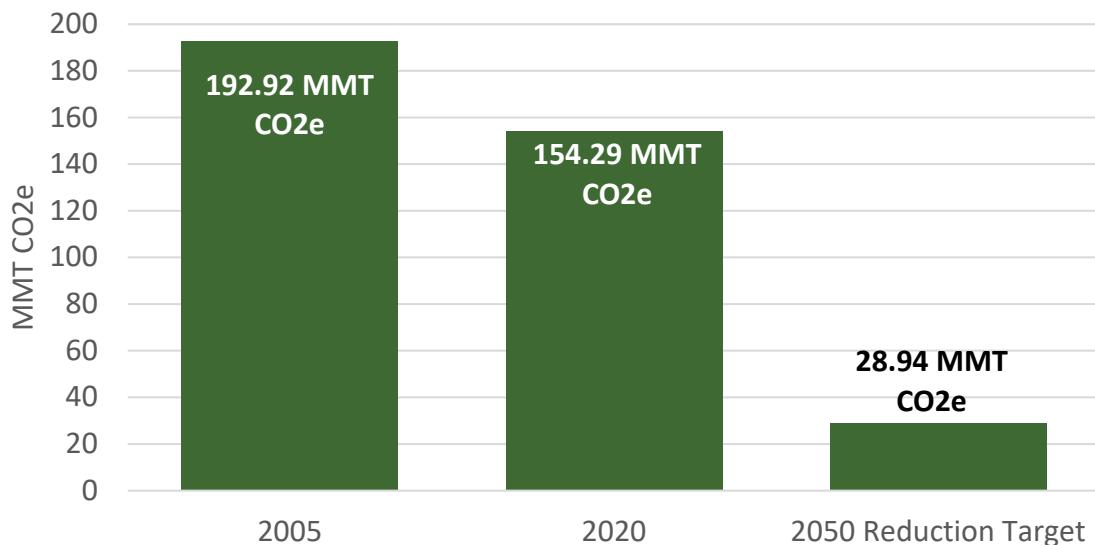

In 2020, the 13 counties produced approximately 152 million metric tons of carbon dioxide equivalent (MMT CO₂e) of GHG emissions (Figure 1). The industrial sector is the largest emissions sector, comprising 36 percent of total regional emissions (Figure 2).

Figure 1. Greenhouse gas emissions by county in the greater Chicago area, 2020

Source: CMAP, 2024.

Figure 2. Greenhouse gas emissions in the greater Chicago area by sector, 2020

Source: CMAP, 2024.


1.2. Greenhouse gas emissions targets

The CAP is designed to chart pathways for achieving an economy-wide gross GHG reduction of 80 to 85 percent below 2005 levels by 2050. This target, set by the CAP steering committee in October 2024, provides the overall context for the plan and requires strategies that address all emissions produced within the 13-county area.

To translate the reduction target into actionable amounts, the project team developed a 2005 baseline emissions inventory using USEPA's State Inventory Tool.³ Using this baseline, an 85 percent reduction by 2050 will require emissions to decrease by 125.35 MMT CO2e between 2020 and 2050. This equates to a reduction of 4.18 MMT CO2e per year.

This analysis also provides an important perspective on recent progress. Between 2005 and 2020, annual GHG emissions in the region declined by 20 percent, resulting in a total reduction of nearly 39 MMT CO2e in 2020 alone (Figure 3).

Figure 3. Greenhouse gas emissions in the greater Chicago area: 2005, 2020, and 2050 target

Source: CMAP, 2025.

2. Final emissions modeling results

At the September meeting, the project team will share final economy-wide and sector emissions reduction modeling results for the planning area. The results will inform discussions around key reduction strategies that represent the greatest potential from both a reduction and implementation standpoint.

2.1. Modeling process

The project team's modeling approach involved a combination of research, best practice, and stakeholder input to inform two runs using E3's Pathways model.⁴ The first model run occurred in spring 2025 with the final occurring in summer 2025.

To inform the model, the team first drafted a suite of decarbonization objectives and strategies for each sector. In late 2024, these objectives and strategies were vetted and refined by CAP working groups, including the building, industry, and transportation working groups and the CMAP Climate Committee for water and wastewater, waste, agriculture, and natural carbon sequestration. Using the refined list, the project team identified those strategies which could both be quantified via E3's Pathways model and presented the greatest potential for reductions. The refined list of strategies informed the first model run.

In June and July of 2025, the project team convened the third and final meetings of the working groups as well as CMAP's Climate Committee to solicit reactions to the first model run and refine the slate of strategies. Among the feedback received were discussions around critical strategy implementation steps, known barriers and key actors necessary for strategy success. With this input, improved scenarios were incorporated into the second and final model run. Some of the more impactful changes include:

- Updated strategies to reflect recent federal policy and funding changes. For example, California's Advanced Clean Cars II and Advanced Clean Trucks electrical vehicle mandates, were initially considered state actions. Recent court decisions indicate that such mandates require federal action. In addition, the early phase-out of Inflation Reduction Act (IRA) incentives for electric vehicles has been replaced with state-level incentives.
- Updated model to vary vehicle miles traveled (VMT) reduction rate by county.
- Incorporated energy management systems and behavior conservation programs.

Appendix A provides details on each strategy included in the final model run. A summary of the feedback received from working group members is provided in **Appendix B**.

After finalizing the economy-wide model, the project team modeled individual strategies to quantify individual strategy GHG reductions and costs. This is important since many of the strategies may overlap when integrated into a single scenario. For example, both passenger vehicle electrification and reducing VMT decrease gasoline consumption, but their individual impact on GHG emission is interdependent and can be challenging to isolate in a single model run with multiple overlapping measures. Quantifying the impacts of each strategy individually allows for a transparent calculation of costs and benefits, while also preserving the ability to see the combined impact of a suite of strategies in one Pathways scenario.

2.2. Economy-wide scenarios

The modeling shows that the greater Chicago region can achieve the steering committee's target, by reducing gross economy-wide emissions by 48 percent below 2005 levels by 2035 and 86 percent by 2050 (Figure 4). To demonstrate this, the plan evaluates three complementary scenarios:

Current policy scenario: projects a 26 percent reduction in emissions by 2035 and 36 percent by 2050

This scenario assesses how far existing actions will take the planning area toward decarbonization and quantifies the remaining emissions gap. It reflects state-level policies in place at the time of modeling, most notably the implementation of the Climate and Energy Jobs Act (CEJA) in Illinois but excludes federal policies and programs due to current uncertainty.⁵ The scenario also does not capture the full extent of existing state and local programs. For example, municipal scale policies, such as benchmarking ordinances or the adoption of stretch codes enabling higher energy performance, are important to reduce local emissions but have not been modeled as part of the current policy scenario.

Plan implementation scenario: projects a 48 percent reduction in emissions by 2035 and 86 percent by 2050

This scenario builds on the current policy scenario to test how many new or expanded actions are needed to close the emissions gap and meet the region's reduction target. It includes more than 30 quantified strategies across seven emission sectors⁶ drawing from policies already adopted in U.S. jurisdictions and benchmarks from state or national modeling. This scenario


achieves an 86 percent reduction without relying on the implementation of direct carbon capture and storage (CSS). Implementing a limited form of CSS can achieve additional reductions of 4.63 MMT CO₂e in industrial emissions, representing an 88 percent reduction in total emissions. These additional reductions through CSS assume that 40 percent of refinery emissions and all remaining emissions from cement production are abated by 2050, consistent with the Department of Energy Pathways to Decarbonization: Chemicals and Refining report.⁷

State and local portion of the plan implementation scenario: projects a 37 percent reduction in emissions by 2035 and a 58 percent reduction by 2050

This scenario highlights those strategies in the plan implementation scenario which can be led by state and local actors. It is based on a subset of existing policies and programs adopted within the region or in other U.S. jurisdictions. In some cases, assumptions modeled under the state and local portion differ slightly from the full plan implementation scenario, often with the plan implementation scenario using more ambitious implementation rates and accelerated timelines to reach the region's 86 percent reduction target.

Additional details on the policies and programs used to model sector reduction measures are included in **Appendix A**.

Figure 4. Economy-wide emissions by scenario in MMT CO₂e (2005-2050)

Source: CMAP and E3, 2025.

2.3. Sector targets

After developing economy-wide scenarios for the greater Chicago area, the project team calculated emissions reduction targets for each sector for the full plan implementation scenario (Table 1). To do this, the project team calculated sectoral targets as an output of the economy-wide modeling rather than establishing them as an input. This approach recognizes that not all

sectors will be able to decarbonize at the same rate and that some sectors will have to achieve greater reductions than others.

Table 1. Implementation scenario emissions by sector

Sector	2005 emissions (MMT CO2e)	2020 emissions (MMT CO2e)	2035 emissions (MMT CO2e)	Percent reduction by 2035	2050 emissions (MMT CO2e)	Percent reduction by 2050
Buildings	66.64	53.99	36.54	-45%	3.35	-95%
Transportation	56.05	39.57	21.77	-61%	4.89	-91%
Industry	65.15	55.95	39.36	-40%	15.14	-77%
Waste	2.95	2.64	1.26	-57%	1.30	-56%
Agriculture	2.13	2.14	1.56	-27%	1.56	-27%
Natural carbon sequestration	-3.57	-2.74	-4.15	16%	-6.25	+75%
Net emissions	189.35	151.53	96.34	-49%	19.98	-89%
Gross emissions	192.92	154.27	100.48	-48%	26.23	-86%

Note: Water and wastewater emissions are currently included within the buildings sector but are in the process of being broken out as a separate category. These sectors represent end-use emissions. As a result, energy generation emissions are allocated to each sector based on where the energy is ultimately used. Emissions from energy generation decline by 98 percent in the plan implementation scenario.

Source: CMAP and E3, 2025.

3. Key reduction strategies

At the September steering committee meeting, the project team will preview plan content and lead a discussion about a select number of modeled strategies that will be critical for meeting the economywide reduction target. Importantly, these strategies also have greater potential for state and local implementation. The strategies selected for steering committee discussion include:

- implement the Clean and Equitable Jobs Act (CEJA) in Illinois;
- adopt building performance standards (BPS);
- establish State Buy Clean programs for cement and steel; and
- reduce vehicle miles traveled (VMT).

During summer of 2025, members from the four CAP working groups and CMAP's Climate Committee provided valuable insights into these and many other reduction strategies included in the plan. Members helped identify key opportunities and barriers that should be considered to help support implementation. For a summary of feedback received related to these and other strategies, see **Appendix B**.

Table 2 provides GHG emission reductions for each of the selected strategies. As a reminder, the project team modeled individual strategies to quantify the GHG reductions separately. Because each strategy was modeled in isolation, the analysis does not capture overlaps between strategies and could either overstate or understate their respective impacts. For example, as the vehicle fleet electrifies, the incremental emissions benefit of VMT reduction

declines. Conversely, strategies that accelerate electrification, such as building performance standards, would achieve greater reductions if paired with additional clean electricity generation in Indiana and Wisconsin.

Table 2. GHG emissions reductions for select modeled strategies

Sector	Modeled strategy	2030 reduction		2050 reduction	
		MMT CO2e	% of sector	MMT CO2e	% of sector
Energy generation	Implement CEJA in Illinois	2.70	9.0%	22.8	79%
Buildings	Adopt statewide BPS	2.1	3.9%	16.1	39.1%
Industry	Enact State Buy Clean programs	0.4	0.7%	1.9	3.9%
Transportation	Reduce VMT	1.6	4.4%	3.8	12.5%

Note: The percentage shown represents the portion of each sector's current policy emissions in that year that the measure would eliminate. Emissions reductions from energy generation under CEJA are allocated to end-use sectors based on where the energy is ultimately consumed.

Source: CMAP and E3, 2025.

3.1. Implement the Clean and Equitable Jobs Act in Illinois

CEJA requires Illinois electricity generation facilities to eliminate their emissions by 2045. It also raises the state's renewable portfolio standard to 50 percent clean electricity by 2040 and 100 percent by 2050. Because most emissions stem from energy use, especially electricity, achieving these targets is central to Illinois' economywide decarbonization.

While implementation of CEJA is included in the current policy scenario, it will take state and local leadership to meet these goals. By 2024, Illinois has reduced emissions by 20 percent from 2005 levels. The state's 2025 climate target calls for a 26 percent reduction from 2005 levels.⁸ Meeting the targets will require expanding wind, solar, and battery storage as well as maintaining existing nuclear generation and retiring fossil fuel plants. Local governments can play a role by helping Illinois and ComEd transition the grid by supporting the development of renewable energy within their jurisdictions. They can also join state and advocacy organizations advocating for the larger grid operators serving the region (PJM and MISO) to streamline the permitting and addition of renewable energy sources onto the grid.

Modeled strategy: Illinois CEJA energy generation and emissions rules

3.2. Adopt building performance standards

Building performance standards (BPSs) are enforceable policies that require existing buildings to meet specific energy-efficiency or emissions performance targets over time. Unlike voluntary programs, BPS establish mandatory, measurable performance levels and typically apply to commercial, multifamily, or public buildings over a certain threshold size. While BPS have been adopted by cities and counties across the nation, there is growing momentum toward state-

level BPS adoption, as it is scalable and ensures consistent requirements across all jurisdictions. For example, Colorado's Building Performance Colorado program, enacted in 2023, includes statewide BPS and benchmarking requirements aimed at reducing emissions from large commercial, multifamily and public buildings by 7 percent by 2026 and 20 percent by 2030 compared to 2021 emissions levels.⁹ Other states like Maryland, Washington, and Oregon also have similar statewide standards.

Modeled strategy: *Adopt statewide building performance standards for commercial and residential buildings larger than 50,000 sq. ft. (approximately 3.3 million units by 2035) to cut emissions by 20 percent by 2035 and buildings larger than 25,000 sq. ft. (approximately 3.6 million units by 2050) by 80 percent by 2050.*

3.3. Establish State Buy Clean programs for cement and steel

Low-to-zero emissions production methods for materials like steel, glass, and cement remain more expensive than fossil-based methods, leaving many industrial operators reluctant to invest in decarbonization. Given the relatively large market share for emissions-intensive construction materials represented by public infrastructure projects, states and other units of government are uniquely positioned to create demand for low-emissions materials. "Buy clean" procurement policies, such as those in Minnesota, Colorado, and Washington, require states to use low-emissions materials in major public works projects, growing demand and changing the economic calculus of decarbonization for operators. Modeling for this strategy relies on national data to estimate the use of steel and cement in public purchases across the planning area. It also assumes that direct reduced iron-electric furnaces (DRI-EAF) with green hydrogen are used to decarbonize steel production and that both the conversion of coal to gas and adoption of energy efficiency improvements are used to decarbonized cement production.

Modeled strategy: *Enact a state-level emissions intensity requirement for cement and steel used in public projects, starting in 2027. Achieves a 7 percent reduction in steel emissions and a 23 percent reduction in cement emissions by 2050.*

3.4. Reduce vehicle miles traveled

The region must advance strategies to decrease the number and length of vehicle trips. By reducing VMT, the region will reduce its fuel consumption, decreasing GHG emissions. While individual VMT reduction strategies are not modeled within Pathways, internal CMAP modeling suggests that improvements to transit frequency, pricing strategies, and supportive land use policies are all necessary to achieve the required level of VMT reduction, given the projected population increases in the region.

VMT reduction assumptions are applied differently within the planning area. In the seven counties of the CMAP region, VMT growth is limited to just a 1 percent increase by 2035 and a 2 percent increase by 2050. Within the three counties of the NIRPC region, VMT growth is constant throughout all three scenarios, resulting in a 20 percent increase in vehicle miles traveled from 2020 to 2050. The reduction targets used in this plan were primarily based on past CMAP travel modeling analyses and new modeling work with Argonne National Labs

through the Energy to Communities program, with peer metropolitan planning organization VMT targets and national studies reviewed as secondary guides.

Modeled strategy: Achieves a 5% reduction in VMT by 2030 and 16% by 2050 below business-as-usual trends. While overall VMT is increasing, this trend equates to a 12% reduction in VMT per capita.¹⁰

4. Benefits of climate action

Strategies to reduce GHG emissions also reduce harmful co-pollutants and can provide other co-benefits to communities and the region. The plan will communicate the myriad benefits that we can reap as a region by taking climate action.

4.1. Air quality and public health

Emission reduction strategies in the plan implementation scenario yield significant reductions in harmful co-pollutants such as fine particulate matter (PM2.5), ozone precursors, and other air pollutants that impact human health. In the greater Chicago region, where transportation, buildings, and industry are major sources of both GHGs and conventional pollutants, climate strategies can provide air quality and public health benefits.

The plan will include an evaluation of how the plan implementation scenario can reduce co-pollutants (e.g., PM2.5, volatile organic compounds, and nitrous oxides) and improve public health outcomes (e.g. avoided deaths, heart attacks, hospitalizations). The project team conducted an air quality and health impact analysis by linking fuel combustion in the modeled scenarios to changes in ambient concentrations of fine particulate matter (PM2.5), nitrogen oxides (NOx), sulfur dioxide (SO₂), and volatile organic compounds (VOCs). Using the USEPA's Co-Benefits Risk Assessment (COBRA) screening model,¹¹ the analysis estimates air quality improvements based on sector-specific changes in technology and fuel use, such as shifts in vehicle types and miles traveled.

At the September meeting, the project team will present the results from this analysis, highlighting expected reductions in NOx, SO₂, PM2.5, and VOCs, as well as the associated public health benefits of the plan implementation scenario when compared to the current policy scenario.

4.2. Co-benefits

The current planning process has focused on local engagement activities with the goal of identifying community priorities to uplift in the plan. As a result, the CAP will highlight those priorities that serve as co-benefits of the decarbonization strategies included in the plan implementation scenario.

To support this goal, the project team solicited input from communities and stakeholders across the region about the effects of climate change, barriers and opportunities to reduce greenhouse gases, and how GHG reduction strategies can maximize benefits to impacted

communities. Engagement activities included an online questionnaire, workshops facilitated by community-based organizations, and the community working group. Detailed summaries are included in **Appendix C**.

Through these activities, the project team identified the following priority co-benefits to consider in the plan:

- Clean air and related health benefits
- Access to safe and accessible bicycle/pedestrian infrastructure
- Access to and more reliable public transit
- Lower energy and water bills
- Extreme weather preparedness
- More trees and natural green spaces
- Workforce opportunities

5. Next steps

Following the September steering committee meeting, the project team will incorporate member feedback into the draft Comprehensive Climate Action Plan. Then, on October 15, 2025, the project team will reconvene the community working group to solicit feedback on how priority co-benefits are addressed in the draft plan. The final draft plan will be presented and discussed during the last steering committee meeting on October 28, 2025. Feedback received during the last meeting and review period will be incorporated into the final plan that must be submitted to USEPA by December 1, 2025. The project team will finalize the plan format for a public release in early 2026.

Appendix A: Modeling reference policies, programs, and other analyses

To estimate emissions reductions from the 36 modeled strategies, the project team developed implementation rates based on existing state and local policies—both within the region and from other states—as well as additional analysis to align with the plan’s 85 percent reduction target. [Appendix A](#)¹² summarizes the source material and explains how each policy or program has been adapted to the greater Chicago area. Unless otherwise noted, programs are assumed to begin implementation in 2026.

After finalizing the economy-wide model, the project team modeled individual strategies to quantify the GHG reductions associated with each one individually. This is important since many of the strategies may overlap when integrated into a single scenario. For example, both passenger vehicle electrification and reducing VMT decrease gasoline consumption, but their individual impact on GHG emission is interdependent and can be challenging to isolate in a single model run with multiple overlapping measures. As a result, the full plan implementation scenario is less than the sum of the modeled reduction strategies because of the interaction between them. Notes in the table indicate where such overlaps occur.

Appendix B: Working group feedback on initial modeling results and implementation

In June and July, the project team workshopped initial modeling results with the building, industry, and transportation working groups. Each meeting included project updates, initial economy-wide modeling results, and sector-specific modeling assumptions and results. Following the presentations, working group members provided feedback and discussed critical implementation steps, known barriers, and key actors.

In July, the project team also reconvened the community working group to discuss project updates and proposed strategies to reduce emissions from the building, industry, and transportation sectors.

Below is a summary of insights from each meeting.

Buildings working group

- Stakeholders were surprised by the significant role that state and local governments can play in advancing building decarbonization, even without federal support—though federal investment remains essential for achieving emissions reduction goals.
- Strategies prioritized for discussion included Building Performance Standards, all-new electric construction requirements, land use strategies, and heat pump incentives.
- Stakeholders emphasized the need for collaboration and streamlined decision-making. Suggestions included convening regional interest groups of building owners to co-develop ambitious but feasible building performance standards, publishing case studies and policy templates from successful local initiatives, creating regionally-funded

programs to avoid competition and inefficiencies between jurisdictions, and advocating for clear state-level policies that support utility decarbonization investments.

- Labor and political resistance to state-level electrification policies remain a key barrier, driven by concerns over gas-related jobs and consumer freedom. Members recommended targeted education and reframing electrification as a workforce transition opportunity.

Industry working group

- Stakeholders were surprised by the relatively limited impact state and local measures could have on industrial decarbonization by 2050.
- Despite previously raised concerns, participants appreciated the modeling of carbon capture and storage as an optional strategy to achieve further reductions.
- Strategies of greatest interest included facility emissions limits, equipment emissions standards, and state-level buy clean programs.
- While large emissions reductions will depend on federal action in a few dominant subsectors, stakeholders also expressed interest in supporting small and mid-sized manufacturers and leveraging new and existing local programs.

Transportation working group

- **Passenger electric vehicles (EVs):** Participants emphasized that the stock turnover and emissions reductions achieved through EV sales mandates will require complementary strategies, including investments in charging infrastructure and reducing reliance on single-occupancy vehicles. Some felt that both the current policy and plan implementation scenarios relied too heavily on ambitious electrification goals, given regulatory uncertainty of policies and programs like the Inflation Reduction Act incentives and fuel economic and efficiency standards, and recommended that the team focus on strategies within state and local control.
- **Medium and heavy-duty EVs:** Participants were encouraged by potential emissions reductions from MDHVs, but noted several barriers to achieving those reductions, including long fleet turnover timelines and high associated costs, changing regulations and economic uncertainty, needed consensus around technological advancements, and lacking grid capacity. Participants noted that setting ambitious goals for this subsector would send important signals to the market, and that interim strategies like low-carbon fuels could be helpful.
- **Reducing VMT:** A lack of sustainable funding for regional transit operations was seen as a major barrier. Participants highlighted the complementary roles of transit, active transportation, land use planning, and demand management, and encouraged the plan to feature these strategies more prominently due to their public health and mobility co-benefits.

Community working group

On July 16, 2025, the community working group held its third meeting to discuss project updates and proposed strategies to reduce emissions from the building, industry, and transportation sectors. Specifically, members shared opportunities, outcomes, and

implementation barriers through the lens of their specific communities, including the following insights:

- **Buildings:** Low-income financial assistance programs to help with upfront costs are necessary to electrify residential buildings. Better insulation for energy efficiency and reducing energy costs is a priority for many communities and is necessary to make energy efficient upgrades successful. Infill development rather than greenfield development can help preserve natural landscapes that also act as carbon sinks.
- **Industry:** The cumulative impact of industry directly impacts air quality and health for nearby communities, which are frequently low-income. Industrial companies must ensure safe air and water and notify neighbors of the pollution they emit. Upgrading aging industrial equipment can help address worker safety, pollution impacts, and energy efficiency.
- **Transportation:** Freight operations have significant air quality and health impacts on low-income communities. Additionally, low-income families face barriers to energy efficient transportation. In community meetings, residents raised concerns about personal electric vehicle affordability and feasibility for charging at home (especially for renters). Low-income communities also often have limited transportation options available to them and lack infrastructure, like accessible sidewalks or bus shelters.
- **Education and workforce:** Education and outreach around the benefits of different decarbonization strategies, specifically around the health and financial impacts, are essential to help build awareness and trust with community members. Additionally, job training must be tied to actual job opportunities.

Appendix C: Community engagement activity summary

Public questionnaire

As part of the planning process, the project team released a community questionnaire (in English and Spanish) to capture local priorities and challenges. Open for six weeks, the questionnaire received 524 responses from across Greater Chicago. Participants who provided contact information were entered into a drawing to win one of twenty \$20 general-use gift cards.

Below are some key findings from the questionnaire.

- Over one-third of survey respondents said extreme weather (storms, heat, flooding, etc.) has impacted their ability to travel to work, school, or medical appointments.
- Another third of respondents say they have had damage to their home from extreme storms.
- More than one-quarter say they struggle to pay gas, electric, or water bills.
- Another quarter of respondents say that their health is impacted by extreme heat.
- Three-quarters indicated that cost is the biggest barrier to switching from traditional appliances or vehicles to electric alternatives.
- Only 15 percent reported using tax credits for electric appliances or vehicles.

Community workshops

The project team created a “workshop in a box” for community partners to use with their networks. Each workshop included an overview of the project, plan goals, discussion questions, and an activity to prioritize co-benefits of reducing greenhouse gas emissions (GHGs). Host organizations received a stipend to cover costs, such as printing or venue rental, and were provided with workshop materials in English and Spanish. They also participated in an orientation led by the project team.

The following organizations hosted (or will host) a workshop:

- Clean Power Lake County - July 15, 2025
- Calumet Collaborative - July 30, 2025
- Northwestern Indiana Regional Planning Council Environment Committee (NIRPC) - August 7, 2025
- NIRPC Michigan City focus group - August 14, 2025
- Southeast Environmental Task Force - August 14, 2025
- Little Village Environmental Justice Organization - scheduled September 27, 2025

As of August 2025, the workshops engaged 46 community members. Below are some key findings.

- Extreme heat, wildfire smoke, and flooding are increasingly affecting peoples’ day-to-day life, health, and finances through increased utility costs and storm damage costs.
- Many community members are unaware of climate impacts and solutions. Education campaigns are key to both promote public understanding/awareness of climate change impacts (e.g., health impacts) and opportunities to lessen impacts and promote action (e.g., utility saving programs, community disaster preparedness, benefits of public transportation).
- Many families cannot afford to switch to low-carbon, energy-efficient upgrades such as electric appliances or vehicles.
- In all workshops, attendees noted diminishing wildlife. Many attendees noted how their communities already lack green and natural spaces, and many have seen the reduction of natural habitats and wildlife in recent years, both from climate change impacts and development. Protecting and expanding natural spaces was supported in all workshops.
- Communities often lack access to low carbon transportation options. Public transit is often unreliable or not available, and communities often don’t have access to sidewalk or trail networks. In all workshops, public electric vehicle chargers ranked as low priority. Multiple participants commented that EVs are not desired by community residents, are too expensive, and are seen as a luxury.

Priority co-benefits to uplift in the plan

In both the questionnaire and the workshops, participants ranked the importance of different co-benefits of reducing GHGs. These co-benefits were organized into three themes: health and quality of life, household budget, and transportation options. Clean air emerged as a top priority in both activities. The top seven benefits across both activities include:

- Clean air and related health benefits
- Access to safe and accessible bicycle/pedestrian infrastructure
- Access to and more reliable public transit
- Lower energy and water bills

- Extreme weather preparedness
- More trees and access to natural green spaces
- Workforce opportunities

Endnotes

¹ Pandemic-related changes in transportation and energy consumption make 2020 an anomalous year for some datasets, but it is still a viable year for this analysis. The inventory is built using modeled and reported data from various time scales and geographies, which reduces the impacts of short-term fluctuations, such as those experienced in 2020. The inventory results are comparable to past efforts to study emissions in the region.

² In November 2024, the 2020 Greenhouse Gas Inventory was updated to incorporate state-specific eGRID emission factors for quantifying the GHG impacts of electricity consumption. These updated factors significantly impacted emissions in the residential, commercial, and industrial building subsectors. Illinois counties experienced a decrease in emissions due to a lower emissions factor, while Indiana and Wisconsin saw increased emissions due to a more carbon-intensive emissions factor.

³ The 2005 GHG inventory uses the USEPA's State Inventory Tool. CMAP collected emissions data for the three states included in this plan and then applied county level shares from the plan inventory to estimate 2005 emissions for the greater Chicago area.

⁴ Pathways is an economy-wide energy and greenhouse gas emissions accounting model created by E3 to help policymakers, businesses, and other stakeholders analyze paths to achieve deep decarbonization of the economy.

⁵ Based on feedback from sector working groups, several federal policies and programs, such as fuel economy and emissions standards for vehicles, federal appliance efficiency standards, and the Inflation Reduction Act, were not included given changing federal priorities.

⁶ While natural carbon sequestration strategies will be modeled, emissions reductions from carbon sinks do not count toward the 85 percent target.

⁷ USDOE, "Pathways to Commercial Liftoff: Decarbonizing Chemicals & Refining," September 2023, <https://climateprogramportal.org/wp-content/uploads/2025/02/20230921-Pathways-to-Commercial-Liftoff-Chemicals-Refining.pdf>.

⁸ Climate Xchange, "Illinois," State Climate Policy Dashboard, July 21, 2025, <https://www.climatepolicydashboard.org/states/Illinois#:~:text=Illinois%20passed%20the%20historic%20Climate,emissions%20regulations%20and%20economic%20pressures>.

⁹ State of Colorado, "Building Performance Colorado," 2025, <https://energyoffice.colorado.gov/bpc>.

¹⁰ Business-as-usual VMT trends are based on CMAPs' regional VMT forecast.

¹¹ USEPA, "Co-benefits risk assessment health impacts screening and mapping tool (COBRA)," June 2025, <https://www.epa.gov/cobra>.

¹² For a complete list of modeled strategies by sector and emissions reductions scenarios, see Table A-1: <https://engage.cmap.illinois.gov/25272/widgets/93018/documents/72793>.